How Synopsys IP and TSMC's N12e Process are Driving AIoT
Artificial intelligence (AI) is revolutionizing nearly every aspect of our lives in all industries, driving the transformation of technology from development to consumption and reshaping how we work, communicate, and interact. On the other hand, the Internet of Things (IoT) connects everyday objects to the internet, enabling a network of interconnected devices that adds additional improved efficiency and enhanced convenience in our lives.
The union of AI and IoT, known as AIoT, integrates AI capabilities into IoT devices and is further poised to change our lives and drive the semiconductor industry's expansion in the foreseeable future. AIoT devices can analyze and interpret data in real-time, enabling smart decisions, autonomously adapting to observed conditions. Promising heightened intelligence, connectivity, and device interactivity, AIoT is capable of handling vast data volumes without needing to rely on cloud-based processing methods.
Within AIoT devices, AI seamlessly integrates into infrastructure components, including programs and chipsets, all interconnected via IoT networks. From smart cities to smart homes and industrial automation, AIoT applications require real-time data processing that is powered by high-capacity on-chip memories, compute power, and minimal power consumption.
Read on to learn more about the opportunities and challenges of AIoT applications at the edge as well as Synopsys IP on TSMC’s N12e process and how it supports pervasive AI at the edge.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- Cadence Demonstrates 112G-ELR SerDes IP on TSMC's 3nm Process Technology
- Infineon Drives Automotive MCU Performance Higher with Synopsys Interface IP
- XConn Revitalizes Next-Gen Data Centers with CXL 2.0 Switch Designed with Synopsys IP
- Meeting the World's Growing Bandwidth Demands with a Complete 1.6T Ethernet IP Solution
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?