Xilinx announces first stacked silicon interconnect technology
Xilinx Inc. announced the industry’s first stacked silicon interconnect technology. It proposes to deliver breakthrough capacity, bandwidth and power savings using multiple FPGA die in a single package for applications that require high-transistor and logic density, as well as tremendous levels of computational and bandwidth performance.
3D packaging approach
L-R: Xilinx's Dave Myron, Suresh Ramalingam and Neeraj Varma discuss the first stacked silicon interconnect technology.
Xilinx has taken a 3D packaging approach that makes use of passive silicon-based interposers, microbumps and through-silicon vias (TSV) to deliver multi-die programmable platforms. As the interposer is passive, it does not dissipate any heat beyond what’s consumed by an FPGA die.
To read the full article, click here
Related Semiconductor IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
- Lossless & Lossy Frame Compression IP
Related Blogs
- The silicon behind Android
- Fab allocation back on the agenda
- Open-Silicon adds Silicon Logic Engineering - for a good reason
- What's happening on the 450mm wafer front?
Latest Blogs
- Building Smarter, Faster: How Arm Compute Subsystems Accelerate the Future of Chip Design
- MIPS P8700 RISC-V Processor for Advanced Functional Safety Systems
- Boost SoC Flexibility: 4 Design Tips for Memory Subsystems with Combo DDR3/4 Interfaces
- High Bandwidth Memory Evolution from First Generation HBM to the Latest HBM4
- Keeping Pace with CXL Specification Revisions