Open-Silicon adds Silicon Logic Engineering - for a good reason
SoC design practice has changed profoundly in recent years. While EDA vendors, IP suppliers, and the marketing departments at FPGA companies seem to think that every new SoC requires a $250 M start-from-zeros design effort, in fact SoC design has bifurcated into two distinct flows. One flow creates a platform design: a completely new SoC to serve a new application. That effort really does start from nearly scratch, and it requires an increasing wealth in people, time, and money. The other flow modifies the platform slightly to create a derivative design. The derivative flow exploits the platform as much as possible, sometimes just replacing one block in the physical design without changing the rest of the chip at all. Consequently, a derivative design may only require a dozen engineers and a couple of million dollars.
To read the full article, click here
Related Semiconductor IP
- Special Purpose Low (Statistical) offset Operation Amplifier
- Rail to Rail Input and Output Operational Amplifier
- Special Purpose Low offset Operational Amplifier
- Special Purpose Low offset Operational Amplifier
- High Current, Low offset fast Operation Amplifier
Related Blogs
- The silicon behind Android
- Fab allocation back on the agenda
- Scary dark silicon is here today
- A cold and changing world for silicon IP
Latest Blogs
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security
- Ceva-XC21 and Ceva-XC23 DSPs: Advancing Wireless and Edge AI Processing
- Cadence Silicon Success of UCIe IP on Samsung Foundry’s 5nm Automotive Process
- Empowering your Embedded AI with 22FDX+