Open-Silicon adds Silicon Logic Engineering - for a good reason
SoC design practice has changed profoundly in recent years. While EDA vendors, IP suppliers, and the marketing departments at FPGA companies seem to think that every new SoC requires a $250 M start-from-zeros design effort, in fact SoC design has bifurcated into two distinct flows. One flow creates a platform design: a completely new SoC to serve a new application. That effort really does start from nearly scratch, and it requires an increasing wealth in people, time, and money. The other flow modifies the platform slightly to create a derivative design. The derivative flow exploits the platform as much as possible, sometimes just replacing one block in the physical design without changing the rest of the chip at all. Consequently, a derivative design may only require a dozen engineers and a couple of million dollars.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Blogs
- The silicon behind Android
- Fab allocation back on the agenda
- Bringing MEMS and asynchronous logic into an SoC design flow
- What's happening on the 450mm wafer front?
Latest Blogs
- A Low-Leakage Digital Foundation for SkyWater 90nm SoCs: Introducing Certus’ Standard Cell Library
- FPGAs vs. eFPGAs: Understanding the Key Differences
- UCIe D2D Adapter Explained: Architecture, Flit Mapping, Reliability, and Protocol Multiplexing
- RT-Europa: The Foundation for RISC-V Automotive Real-Time Computing
- Arm Flexible Access broadens its scope to help more companies build silicon faster