Semico's SoC hierarchy. What do you do with a platypus SoC?
For the past couple of weeks, I’ve been writing about several aspects of Semico’s IP Subsystem report. (see “Are IP subsystems the next big IP category?”) The report’s premise is that the rise of IP Subsystems—IP blocks that deliver complete functions such as video or audio through a collection of design IP, software stacks, application software, and verification IP—fundamentally change the way SoCs are and will be developed in advanced process nodes. (Note: this is a concept that’s firmly embedded in the EDA360 vision.) A significant factor not yet covered in this blog is how the hierarchy of SoC definitions and metrics changes with this step up in IP complexity. This blog entry rectifies that omission.
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related Blogs
- ARM furthers its "cover the earth" strategy with introduction of R5 and R7 core variants for fast, real-time, deterministic SoC applications
- How many people does it take to design an SoC? - Redux. Building brains with processors.
- Death of the SoC
- Jim Hogan details his views of SoC opportunities and again reveals his SoC Realization investment shopping list
Latest Blogs
- The Perfect Solution for Local AI
- UA Link vs Interlaken: What you need to know about the right protocol for AI and HPC interconnect fabrics
- Analog Design and Layout Migration automation in the AI era
- UWB, Digital Keys, and the Quest for Greater Range
- Building Smarter, Faster: How Arm Compute Subsystems Accelerate the Future of Chip Design