Selecting optimized ESD protection for CMOS image sensors
The market for CMOS image sensors (CIS) is projected to grow with a Compound annual growth rate (CAGR) of 7 to almost 9% in the next 5 years. According to researchers it will reach a total yearly value of nearly $30B by 2026 (link 1, link 2, link 3).
CMOS imagers are used in many different markets. Consumer electronics (e.g. smartphones) represents the biggest part but the sensors are also used in surveillance and security, space, healthcare and automotive products. That last segment is actually growing faster than the total CIS market. The number of image sensors per car is increasing quickly both for viewing as for ADAS type of functionality. The total market value in automotive is projected to double from 2018 to 2024, according to Yole (link).
The technology behind CMOS imagers has seen a lot of evolution. That is needed to enable higher resolutions (number of pixels), faster capture (more frames per second), better image quality under low light settings, higher number of colors that can be recognized, and several other improvements.
The image sensors are always combined with other silicon chips like memory, compute and Artificial Intelligence (AI) devices. Some functions can be integrated on the sensor but recently 3D chip-stacking is used to integrate multiple dies in a single package.
At Sofics we have supported several companies that develop image sensors for consumer, automotive and security applications. The article below provides a summary about the 3 main aspects that IC designers need to consider when selecting the ESD protection clamps for their image sensor projects.
To read the full article, click here
Related Semiconductor IP
- Stand-Alone ESD Cell in GF 28nm
- Analog I/O Library with a custom 12V ESD Solution IN GF 55nm
- USB 2.0 OTG ESD Protection I/O Pad Set
- ESD Protection
- RF I/O Pad Set and Discrete RF ESD Protection Components
Related Blogs
- Optimized on-chip ESD protection to enable high-speed Ethernet speed in cars
- ESD Protection for an High Voltage Tolerant Driver Circuit in 4nm FinFET Technology
- Selecting custom ESD IP for your next IC
- Designing Electrostatic Discharge (ESD) Protection for Monolithic SoCs and Multi-Die Systems
Latest Blogs
- Deploying StrongSwan on an Embedded FPGA Platform, IPsec/IKEv2 on Arty Z7 with PetaLinux and PQC
- The Rise of Physical AI: When Intelligence Enters the Real World
- Can Open-Source ISAs Catalyze Smart Manufacturing?
- The Future of AI is Modular: Why the SiFive-NVIDIA Milestone Matters
- Heterogeneous Multicore using Cadence IP