Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
Do you need more compute elements? Do you need more memory? Do you need more cache? Last week we announced the MIPS P8700, the industry’s first AI-enabled RISC-V automotive CPU for ADAS and autonomous vehicles. The MIPS P8700 gives you the freedom to choose how to solve your problem.
How is scalability optimized?
The MIPS P8700 scalability starts with the core. Your core can choose one or two high performance, out-of-order compute engines known as harts within a single core. That same core can choose 32KB or 64KB L1 instruction cache and 32KB or 64KB L1 data cache for the two harts to share.
You can further enhance the core with L2 cache from 256KB to 2MB. At this L2 level you can also keep building with multiple cores in a single cluster. Add up to 5 more cores to give a cluster of 6 cores and 12 harts of compute with a shared L2 cache.
To read the full article, click here
Related Semiconductor IP
Related Blogs
- Intel and Cadence Partner to Build Out the Foundry Ecosystem in America
- Leveraging AI to Optimize the Debug Productivity and Verification Throughput
- 5 ways to achieve the right level of customization
- The Evolution of Generative AI up to the Model-Driven Era
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview