Revolutionize System Verification Flow with a Holistic Approach
The increasing functionality of designs is leading to a noticeable rise in the complexity and efforts needed for their verification. The surge in verification efforts is not confined to hardware exclusively, as software integration has introduced a new dimension of intricacy to the product development process. Further, with the rising complexity of software, its verification efforts are enormous and increasing with shrinking technology. The ever-growing hardware and software complexity necessitates an exhaustive verification process, resulting in increased verification challenges and overheads. Unlike other EDA tasks, verification is an infinite problem that staggers the computing power. A billion-gate SoC can have several billions of possible scenarios to be checked to thoroughly verify its functionality.
Traditional tools are focused on the unit level, thus incorporating delays and uncertainties. As design complexity increases, so do verification requirements. More data requires quantifiable verification. Additional system verification is required for power-managed sensors, high-speed mixed signals, and other features. Advanced designs demand enhanced verification predictability and quality. A unified co-verification approach is necessary to address the complexity of verification discontinuity by integrating tools and unifying user interfaces. Therefore, the industry needs a unified, congruent, and holistic approach that combines the best of all the tools rather than just optimizing one aspect of the verification flow. A holistic approach to verification validates all aspects of verification, including architectural and implementation specs, and matches the right tool to the right job. Let us explore why a holistic approach to verification is essential to ensure that the product works for some definition of it and works.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- What does Cadence mean when it calls System Realization a "holistic" approach to IC design?
- Building a Swiss cheese model approach for processor verification
- Leveraging a Unified Emulation and Prototyping System to Address Verification Requirements Across the Chip Development Cycle
- The need for a holistic approach to safety and security
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?