Part 1: Fast Access to Accelerators: Enabling Optimized Data Transfer with RISC-V
This is the first in a series of blogs about Domain-specific accelerators (DSAs), which are becoming increasingly common in systems-on-chip (SoCs). A DSA provides higher performance per watt than a general-purpose processor by optimizing the specialized function it implements. Examples of DSAs include compression/decompression units, random number generators and network packet processors. A DSA is typically connected to the core complex using a standard IO interconnect, such as an AXI bus.
To read the full article, click here
Related Semiconductor IP
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- 32 bit RISC-V Multicore Processor with 256-bit VLEN and AMM
- All-In-One RISC-V NPU
- ISO26262 ASIL-B/D Compliant 32-bit RISC-V Core
Related Blogs
- Fast Access to Accelerators: Enabling Optimized Data Transfer with RISC-V
- High-Bandwidth Core Access to Accelerators: Enabling Optimized Data Transfers with RISC-V
- High-Bandwidth Accelerator Access to Memory: Enabling Optimized Data Transfers with RISC-V
- Part 3: High-Bandwidth Accelerator Access to Memory: Enabling Optimized Data Transfers with RISC-V
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power