NVIDIA Previews Open-source Processor Core for Deep Neural Network Inference
With the proliferation of deep learning, NVIDIA has realized its longstanding aspirations to make general-purpose graphics processing units (GPGPUs) a mainstream technology. The company's GPUs are commonly used to accelerate neural network training, and are also being adopted for neural network inference acceleration in self-driving cars, robots and other high-end autonomous platforms. NVIDIA also sees plenty of opportunities for inference acceleration in IoT and other "edge" platforms, although it doesn't intend to supply them with chips. Instead, it's decided to open-source the NVDLA deep learning processor core found in its "Xavier" SoC introduced last fall.
Related Semiconductor IP
- High performance-efficient deep learning accelerator for edge and end-point inference
- Distributed Thermal Sensor (DTS) Deep NWELL, TSMC N3E
- Temperature Sensor Deep NWELL, TSMC N3E
- Temperature Sensor Deep NWELL, TSMC N4P
- Distributed Thermal Sensor (DTS) Deep NWELL, TSMC N4P
Related Blogs
- Synopsys Fields Processor Core for Neural Network Computer Vision Applications
- Imagination Technologies' Upgraded GPUs, New Neural Network Core Provide Deep Learning Processing Options
- Processor Wars: NVIDIA reveals a phantom fifth ARM Cortex-A9 processor core in Kal-El mobile processor IC. Guess why it's there?
- Accelerating Machine Learning Deployment with CEVA Deep Neural Network (CDNN)
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?