Neural Network Efficiency with Embedded FPGA's
The traditional metrics for evaluating IP are performance, power, and area, commonly abbreviated as PPA. Viewed independently, PPA measures can be difficult to assess. As an example, design constraints that are purely based on performance, without concern for the associated power dissipation and circuit area, are increasingly rare. There is a related set of characteristics of importance, especially given the increasing integration of SoC circuitry associated with deep neural networks (DNN) – namely, the implementation energy and area efficiency, usually represented as a performance per watt measure and a performance per area measure.
The DNN implementation options commonly considered are: a software-programmed (general purpose) microprocessor core, a programmed graphics processing unit (GPU), a field-programmable gate array, and a hard-wired logic block. In 2002, Broderson and Zhang from UC-Berkeley published a Technical Report that described the efficiency of different options, targeting digital signal processing algorithms. [1]
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related Blogs
- Embedded Vision: The Road Ahead for Neural Networks and Five Likely Surprises
- FPGAs take on convolutional neural networks
- Synopsys Fields Processor Core for Neural Network Computer Vision Applications
- Reconfigurable redefined with embedded FPGA core IP
Latest Blogs
- The Perfect Solution for Local AI
- UA Link vs Interlaken: What you need to know about the right protocol for AI and HPC interconnect fabrics
- Analog Design and Layout Migration automation in the AI era
- UWB, Digital Keys, and the Quest for Greater Range
- Building Smarter, Faster: How Arm Compute Subsystems Accelerate the Future of Chip Design