Mixed Signal Design IP Embraces Metric-Driven Verification Using RNM
Even though it's been over 2 months since this year's Design Automation Conference in San Francisco, I am still surprised by the response that metric-driven, mixed-signal verification gets from our design community. Cadence had quite a few customer presentations at the EDA360 Theater at DAC this year. However, there was one presentation titled "Metric Driven Verification Approach for Analog/Mixed Signal IPs" authored by Pierluigi Daglio and Marco Carlini from STMicroelectronics that has garnered a lot of interest from the verification community.
Metric-driven verification is the norm for digital designs. But, we can extend this concept to analog/mixed signal designs. Analog/mixed signal verification in the context of full chip verification can achieve a respectable coverage level without compromising on performance levels of digital verification. This can be accomplished by using more robust and abstract analog behavior models such as Real Number (RNM) models using Verilog-AMS wreal as an example. RNM models are also provided in VHDL and System Verilog extensions as well.
To read the full article, click here
Related Semiconductor IP
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
Related Blogs
- Mixed Signal Success Requires the Voice of Analog Designers
- Keeping Pace with Memory Technology using Advanced Verification
- How to Address the Top 7 JEDEC-UFS Stack Verification Challenges Using Test Suites
- Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple
Latest Blogs
- Analog Design and Layout Migration automation in the AI era
- UWB, Digital Keys, and the Quest for Greater Range
- Building Smarter, Faster: How Arm Compute Subsystems Accelerate the Future of Chip Design
- MIPS P8700 RISC-V Processor for Advanced Functional Safety Systems
- Boost SoC Flexibility: 4 Design Tips for Memory Subsystems with Combo DDR3/4 Interfaces