Mixed Signal Design IP Embraces Metric-Driven Verification Using RNM
Even though it's been over 2 months since this year's Design Automation Conference in San Francisco, I am still surprised by the response that metric-driven, mixed-signal verification gets from our design community. Cadence had quite a few customer presentations at the EDA360 Theater at DAC this year. However, there was one presentation titled "Metric Driven Verification Approach for Analog/Mixed Signal IPs" authored by Pierluigi Daglio and Marco Carlini from STMicroelectronics that has garnered a lot of interest from the verification community.
Metric-driven verification is the norm for digital designs. But, we can extend this concept to analog/mixed signal designs. Analog/mixed signal verification in the context of full chip verification can achieve a respectable coverage level without compromising on performance levels of digital verification. This can be accomplished by using more robust and abstract analog behavior models such as Real Number (RNM) models using Verilog-AMS wreal as an example. RNM models are also provided in VHDL and System Verilog extensions as well.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related Blogs
- Mixed Signal Success Requires the Voice of Analog Designers
- How to Address the Top 7 JEDEC-UFS Stack Verification Challenges Using Test Suites
- Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple
- Arasan MIPI CSI-2-RX IP Verification Using Questa VIPs
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production