Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple
Verifying lane adapter state machine in a router design is quite an involved task and needs verification from several aspects including that for its link training functionality.
The diagram below shows two lane adapters connected to each other and each going through the link training process. Each training sub-state transition is contingent on conditions for both transmission and reception of relevant ordered sets needed for a transition. Until conditions for both are satisfied an adapter cannot transition to the next training sub-state.
As deduced from the lane adapter state machine section of USB4 specification, the reception condition for the next training sub-state transition is less strict than that of the transmission condition. For ex., for LOCK1 to LOCK2 transition, the reception condition requires only two SLOS symbols in a row being detected, while the transmission condition requires at least four complete SLOS1 ordered sets to be sent.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
Related Blogs
- With USB4 v2, Faster Speeds Is the Name of the Game
- Why SRAM PUF Technology Is the Bedrock of Dependable Security in Any Chip
- The Future of Driving: How Advanced DSP is Shaping Car Infotainment Systems
- Announcing the launch of CHERI Alliance: A unified front against digital threats
Latest Blogs
- How is RISC-V’s open and customizable design changing embedded systems?
- Imagination GPUs now support Vulkan 1.4 and Android 16
- From "What-If" to "What-Is": Cadence IP Validation for Silicon Platform Success
- Accelerating RTL Design with Agentic AI: A Multi-Agent LLM-Driven Approach
- UEC-CBFC: Credit-Based Flow Control for Next-Gen Ethernet in AI and HPC