Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple
Verifying lane adapter state machine in a router design is quite an involved task and needs verification from several aspects including that for its link training functionality.
The diagram below shows two lane adapters connected to each other and each going through the link training process. Each training sub-state transition is contingent on conditions for both transmission and reception of relevant ordered sets needed for a transition. Until conditions for both are satisfied an adapter cannot transition to the next training sub-state.
As deduced from the lane adapter state machine section of USB4 specification, the reception condition for the next training sub-state transition is less strict than that of the transmission condition. For ex., for LOCK1 to LOCK2 transition, the reception condition requires only two SLOS symbols in a row being detected, while the transmission condition requires at least four complete SLOS1 ordered sets to be sent.
To read the full article, click here
Related Semiconductor IP
- Configurable CPU tailored precisely to your needs
- Ultra high-performance low-power ADC
- HiFi iQ DSP
- CXL 4 Verification IP
- JESD204E Controller IP
Related Blogs
- Design, Verification, and Software Development Decisions Require a Single Source of Truth
- USB4 Sideband Channel Is Not a Side Business
- Connected AI is More Than the Sum of its Parts
- Maximizing the Usability of Your Chip Development: Design with Flexibility for the Future
Latest Blogs
- The Memory Imperative for Next-Generation AI Accelerator SoCs
- Leadership in CAN XL strengthens Bosch’s position in vehicle communication
- Validating UPLI Protocol Across Topologies with Cadence UALink VIP
- Cadence Tapes Out 32GT/s UCIe IP Subsystem on Samsung 4nm Technology
- LPDDR6 vs. LPDDR5 and LPDDR5X: What’s the Difference?