Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple
Verifying lane adapter state machine in a router design is quite an involved task and needs verification from several aspects including that for its link training functionality.
The diagram below shows two lane adapters connected to each other and each going through the link training process. Each training sub-state transition is contingent on conditions for both transmission and reception of relevant ordered sets needed for a transition. Until conditions for both are satisfied an adapter cannot transition to the next training sub-state.
As deduced from the lane adapter state machine section of USB4 specification, the reception condition for the next training sub-state transition is less strict than that of the transmission condition. For ex., for LOCK1 to LOCK2 transition, the reception condition requires only two SLOS symbols in a row being detected, while the transmission condition requires at least four complete SLOS1 ordered sets to be sent.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Blogs
- Design, Verification, and Software Development Decisions Require a Single Source of Truth
- With USB4 v2, Faster Speeds Is the Name of the Game
- USB4 Sideband Channel Is Not a Side Business
- From DIY To Advanced NoC Solutions: The Future Of MCU Design
Latest Blogs
- ReRAM in Automotive SoCs: When Every Nanosecond Counts
- AndeSentry – Andes’ Security Platform
- Formally verifying AVX2 rejection sampling for ML-KEM
- Integrating PQC into StrongSwan: ML-KEM integration for IPsec/IKEv2
- Breaking the Bandwidth Barrier: Enabling Celestial AI’s Photonic Fabric™ with Custom ESD IP on TSMC’s 5nm Platform