Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple
Verifying lane adapter state machine in a router design is quite an involved task and needs verification from several aspects including that for its link training functionality.
The diagram below shows two lane adapters connected to each other and each going through the link training process. Each training sub-state transition is contingent on conditions for both transmission and reception of relevant ordered sets needed for a transition. Until conditions for both are satisfied an adapter cannot transition to the next training sub-state.
As deduced from the lane adapter state machine section of USB4 specification, the reception condition for the next training sub-state transition is less strict than that of the transmission condition. For ex., for LOCK1 to LOCK2 transition, the reception condition requires only two SLOS symbols in a row being detected, while the transmission condition requires at least four complete SLOS1 ordered sets to be sent.
To read the full article, click here
Related Semiconductor IP
- Multi-channel, multi-rate Ethernet aggregator - 10G to 400G AX (e.g., AI)
- Multi-channel, multi-rate Ethernet aggregator - 10G to 800G DX
- 200G/400G/800G Ethernet PCS/FEC
- 50G/100G MAC/PCS/FEC
- 25G/10G/SGMII/ 1000BASE-X PCS and MAC
Related Blogs
- With USB4 v2, Faster Speeds Is the Name of the Game
- Ambient IoT: 5 Ways Packetcraft's Software is Optimized to Enable the New Class of Connectivity
- Navigating the Complexity of Address Translation Verification in PCI Express 6.0
- Industry Leaders Discuss "Overcoming the Challenges of Multi-die Systems Verification"