Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple
Verifying lane adapter state machine in a router design is quite an involved task and needs verification from several aspects including that for its link training functionality.
The diagram below shows two lane adapters connected to each other and each going through the link training process. Each training sub-state transition is contingent on conditions for both transmission and reception of relevant ordered sets needed for a transition. Until conditions for both are satisfied an adapter cannot transition to the next training sub-state.
As deduced from the lane adapter state machine section of USB4 specification, the reception condition for the next training sub-state transition is less strict than that of the transmission condition. For ex., for LOCK1 to LOCK2 transition, the reception condition requires only two SLOS symbols in a row being detected, while the transmission condition requires at least four complete SLOS1 ordered sets to be sent.
To read the full article, click here
Related Semiconductor IP
- eDP 2.0 Verification IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- LLM AI IP Core
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
Related Blogs
- With USB4 v2, Faster Speeds Is the Name of the Game
- Announcing the launch of CHERI Alliance: A unified front against digital threats
- USB4 Sideband Channel Is Not a Side Business
- From DIY To Advanced NoC Solutions: The Future Of MCU Design
Latest Blogs
- Enhancing PCIe6.0 Performance: Flit Sequence Numbers and Selective NAK Explained
- Smarter ASICs and SoCs: Unlocking Real-World Connectivity with eFPGA and Data Converters
- RISC-V Takes First Step Toward International Standardization as ISO/IEC JTC1 Grants PAS Submitter Status
- Running Optimized PyTorch Models on Cadence DSPs with ExecuTorch
- PCIe 6.x: Synopsys IP Selected as First Gold System for Compliance Testing