Verification of the Lane Adapter FSM of a USB4 Router Design Is Not Simple
Verifying lane adapter state machine in a router design is quite an involved task and needs verification from several aspects including that for its link training functionality.
The diagram below shows two lane adapters connected to each other and each going through the link training process. Each training sub-state transition is contingent on conditions for both transmission and reception of relevant ordered sets needed for a transition. Until conditions for both are satisfied an adapter cannot transition to the next training sub-state.
As deduced from the lane adapter state machine section of USB4 specification, the reception condition for the next training sub-state transition is less strict than that of the transmission condition. For ex., for LOCK1 to LOCK2 transition, the reception condition requires only two SLOS symbols in a row being detected, while the transmission condition requires at least four complete SLOS1 ordered sets to be sent.
To read the full article, click here
Related Semiconductor IP
- Special Purpose Low (Statistical) offset Operation Amplifier
- Rail to Rail Input and Output Operational Amplifier
- Special Purpose Low offset Operational Amplifier
- Special Purpose Low offset Operational Amplifier
- High Current, Low offset fast Operation Amplifier
Related Blogs
- With USB4 v2, Faster Speeds Is the Name of the Game
- Windows on Arm is Ready for Prime Time: Native Chrome Caps Momentum for the Future of Laptop Computing
- Ambient IoT: 5 Ways Packetcraft's Software is Optimized to Enable the New Class of Connectivity
- Navigating the Complexity of Address Translation Verification in PCI Express 6.0
Latest Blogs
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security
- Ceva-XC21 and Ceva-XC23 DSPs: Advancing Wireless and Edge AI Processing
- Cadence Silicon Success of UCIe IP on Samsung Foundry’s 5nm Automotive Process
- Empowering your Embedded AI with 22FDX+