Leveraging AI to Optimize the Debug Productivity and Verification Throughput
The impact of semiconductors on various sectors cannot be overstated. Semiconductors have revolutionized our operations from the automotive industry to IoT, communication, and HPC. However, as demand for high performance and instant gratification increases, the complexity of SoCs has grown significantly. With hundreds of IPs integrated into SoCs, bugs have become more common and challenging to fix. The verification process at the SoC level is causing significant delays in tapeout schedules. Detecting bugs within the allocated budget and timeline is becoming increasingly difficult, especially with the reduced geometries and increased gate counts. With SoC design engineers spending more than 70% of their verification time, detecting a single bug takes an average of 16-20 engineering hours. Imagine the impact of having 1000 bugs in a design!
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
Related Blogs
- How AI Is Enabling Digital Design Retargeting to Maximize Productivity
- Partitioning Strategies to Optimize AI Inference for Multi-Core Platforms
- Synopsys and Alchip Collaborate to Streamline the Path to Multi-die Success with Soft Chiplets
- Imec and Synopsys Lower the Barriers to 2nm Technology With New Pathfinding Design Kit
Latest Blogs
- How is RISC-V’s open and customizable design changing embedded systems?
- Imagination GPUs now support Vulkan 1.4 and Android 16
- From "What-If" to "What-Is": Cadence IP Validation for Silicon Platform Success
- Accelerating RTL Design with Agentic AI: A Multi-Agent LLM-Driven Approach
- UEC-CBFC: Credit-Based Flow Control for Next-Gen Ethernet in AI and HPC