Reducing Manual Effort and Achieving Better Chip Verification Coverage with AI and Formal Techniques
Given the size and complexity of modern semiconductor designs, functional verification has become a dominant phase in the chip development cycle. Coverage lies at the very heart of this process, providing the best way to assess verification progress and determine where to focus further effort. Code coverage of the register transfer level (RTL) chip design, functional coverage as specified by the verification team, and coverage derived from assertions are combined to yield a single metric for verification thoroughness.
Coverage goals are usually quite high (95% or more) and hard to achieve. Chip verification engineers spend weeks or months trying to hit unreached coverage targets to ensure that the design is thoroughly exercised and bugs are not missed. Traditionally this has involved a lot of manual effort, consuming valuable human resources and delaying project schedules. Fortunately, in recent years several powerful techniques have been developed to automate the coverage process, achieve faster coverage closure, and end up with higher overall coverage.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- How to Speed Up Simulation Coverage Closure with Formal Verification Tools
- How AI Drives Faster Chip Verification Coverage and Debug for First-Time-Right Silicon
- Raising RISC-V processor quality with formal verification
- How Qualcomm Accelerated Coverage Closure with AI-Driven Verification
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?