Reducing Manual Effort and Achieving Better Chip Verification Coverage with AI and Formal Techniques
Given the size and complexity of modern semiconductor designs, functional verification has become a dominant phase in the chip development cycle. Coverage lies at the very heart of this process, providing the best way to assess verification progress and determine where to focus further effort. Code coverage of the register transfer level (RTL) chip design, functional coverage as specified by the verification team, and coverage derived from assertions are combined to yield a single metric for verification thoroughness.
Coverage goals are usually quite high (95% or more) and hard to achieve. Chip verification engineers spend weeks or months trying to hit unreached coverage targets to ensure that the design is thoroughly exercised and bugs are not missed. Traditionally this has involved a lot of manual effort, consuming valuable human resources and delaying project schedules. Fortunately, in recent years several powerful techniques have been developed to automate the coverage process, achieve faster coverage closure, and end up with higher overall coverage.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related Blogs
- How to Speed Up Simulation Coverage Closure with Formal Verification Tools
- How AI Drives Faster Chip Verification Coverage and Debug for First-Time-Right Silicon
- How Qualcomm Accelerated Coverage Closure with AI-Driven Verification
- Formal verification best practices: sign-off and wrap-up
Latest Blogs
- Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
- The Role of GPU in AI: Tech Impact & Imagination Technologies
- Time-of-Flight Decoding with Tensilica Vision DSPs - AI's Role in ToF Decoding
- Synopsys Expands Collaboration with Arm to Accelerate the Automotive Industry’s Transformation to Software-Defined Vehicles
- Deep Robotics and Arm Power the Future of Autonomous Mobility