Can "Less than Moore" FDSOI provides better ROI for Mobile IC?
In this previous article, I was suggesting that certain chip makers may take a serious look at a disruptive way to look at Moore’s law, as they may get better ROI, profit and even better revenue. The idea is to select technology node and packaging technique in order to optimize the Price, Performance, Power triptych and manage chip development lead time to optimize Time To Market (TTM) and cost. Only a complete business plan would confirm the validity of this assumption, but we think it could be a new direction to be explored, so we propose some tracks.
The goal for a chip maker supporting “Less Than Moore” is not to displace the Qualcomm or Samsung, following Moore’s law and getting back more than enough revenue to invest and develop IC ever more integrated, targeting smaller technology node, supporting the type of Roadmap you can see below. This roadmap from Samsung shows Discrete Application Processor and Baseband Processor paths, as well as in parallel a roadmap for cost sensitive systems with Integrated (Application + BB) processor.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
- Multi-core capable 64-bit RISC-V CPU with vector extensions
Related Blogs
- Could "Less than Moore" be better to support Mobile segment explosion?
- How to manage decreasing by 70% a $5B IC business in less than 6 years? TI knows the answer...
- Processor Wars: NVIDIA reveals a phantom fifth ARM Cortex-A9 processor core in Kal-El mobile processor IC. Guess why it's there?
- FD-SOI Can Deliver Leading-Edge European IC Process Technology
Latest Blogs
- From guesswork to guidance: Mastering processor co-design with Codasip Exploration Framework
- Enabling AI Innovation at The Far Edge
- Unleashing Leading On-Device AI Performance and Efficiency with New Arm C1 CPU Cluster
- The Perfect Solution for Local AI
- UA Link vs Interlaken: What you need to know about the right protocol for AI and HPC interconnect fabrics