How Multi-Die Systems Create New Business Opportunities for Semiconductor Companies
As system designers seek to pack ever-more transistors into smaller spaces, monolithic system-on-chips (SoCs) are quickly nearing the reticle ceiling for manufacturing. Simply put, conventional SoCs are becoming too big and costly to produce, especially for compute-intensive applications such as machine learning (ML), high-performance computing (HPC), and advanced driver assistance systems (ADAS).
Indeed, these workloads are incredibly demanding due to massive parallelism requirements for multiply-accumulate (MAC) operations such as dot product functions. Thanks to multi-die systems, purpose-built chips can now support compute-intensive tasks with a diverse lineup of high-end processors, sophisticated memory arrays, and reliable real-time data connectivity between dies.
Consisting of multiple heterogeneous dies integrated into a single package, multi-die systems offer semiconductor companies a more revolutionary way of designing and fabricating a new generation of silicon. “To be able to tackle these very large workloads, we need to put more silicon in the package than would fit in a single monolithic die,” Gerry Talbot, AMD corporate fellow, explains in a recent MIT Technology Review Insights report. “You physically could not print it in a single reticle.”
Titled “Multi-Die Systems Define the Future of Semiconductors,” the MIT Technology Review report explores why multi-die systems will be instrumental in meeting burgeoning industry demand for compute power. In this blog post, we summarize key sections of the MIT Technology Review report and highlight additional quotes from senior Synopsys executives and industry experts—with a focus on how semiconductor companies can leverage the advances of multi-die systems to create new business opportunities.
Why Multi-Die Systems?
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- How Photonics Can Light the Way for Higher Performing Multi-Die Systems
- How SerDes Became Key IP for Semiconductor Systems
- Can the Semiconductor Industry Overcome Thermal Design Challenges in Multi-Die Systems?
- New Synopsys Report Highlights Key Industry Insights on the Impact of Multi-Die Systems
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview