How Multi-Die Systems Create New Business Opportunities for Semiconductor Companies
As system designers seek to pack ever-more transistors into smaller spaces, monolithic system-on-chips (SoCs) are quickly nearing the reticle ceiling for manufacturing. Simply put, conventional SoCs are becoming too big and costly to produce, especially for compute-intensive applications such as machine learning (ML), high-performance computing (HPC), and advanced driver assistance systems (ADAS).
Indeed, these workloads are incredibly demanding due to massive parallelism requirements for multiply-accumulate (MAC) operations such as dot product functions. Thanks to multi-die systems, purpose-built chips can now support compute-intensive tasks with a diverse lineup of high-end processors, sophisticated memory arrays, and reliable real-time data connectivity between dies.
Consisting of multiple heterogeneous dies integrated into a single package, multi-die systems offer semiconductor companies a more revolutionary way of designing and fabricating a new generation of silicon. “To be able to tackle these very large workloads, we need to put more silicon in the package than would fit in a single monolithic die,” Gerry Talbot, AMD corporate fellow, explains in a recent MIT Technology Review Insights report. “You physically could not print it in a single reticle.”
Titled “Multi-Die Systems Define the Future of Semiconductors,” the MIT Technology Review report explores why multi-die systems will be instrumental in meeting burgeoning industry demand for compute power. In this blog post, we summarize key sections of the MIT Technology Review report and highlight additional quotes from senior Synopsys executives and industry experts—with a focus on how semiconductor companies can leverage the advances of multi-die systems to create new business opportunities.
Why Multi-Die Systems?
To read the full article, click here
Related Semiconductor IP
- SoC Security Platform / Hardware Root of Trust
- SPI to AHB-Lite Bridge
- Octal SPI Master/Slave Controller
- I2C and SPI Master/Slave Controller
- AHB/AXI4-Lite to AXI4-Stream Bridge
Related Blogs
- How Photonics Can Light the Way for Higher Performing Multi-Die Systems
- How SerDes Became Key IP for Semiconductor Systems
- Can the Semiconductor Industry Overcome Thermal Design Challenges in Multi-Die Systems?
- New Synopsys Report Highlights Key Industry Insights on the Impact of Multi-Die Systems