Can GPUs Accelerate Digital Design Implementation?
When it comes to digital design implementation, each step in the RTL-to-GDSII process is highly compute intense. At the SoC level, you’re evaluating various floorplan options of hundreds of partitions to minimize latency in the interconnections and drive greater efficiencies. Once you’ve determined your floorplan, then it’s time to move on to the rest of the steps within every partition toward full-chip implementation and signoff. Since compute requirements are already high at each step, and further multiplied by the number of partitions, this begs the questions: Are the CPUs traditionally used in digital design running out of capacity? Would GPUs be able to fulfill the compute demand?
Today, GPUs are noted for handling the most demanding workloads of applications like artificial intelligence (AI)/machine learning (ML), gaming, and high-performance computing. As chips grow larger and more complex, it may also be time to add digital chip design implementation to this list.
To read the full article, click here
Related Semiconductor IP
- SLVS Transceiver in TSMC 28nm
- 0.9V/2.5V I/O Library in TSMC 55nm
- 1.8V/3.3V Multi-Voltage GPIO in TSMC 28nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
Related Blogs
- 4 Ways that Digital Techniques Can Speed Up Memory Design and Verification
- FD-SOI: Can I Design It and Manufacture It?
- Can the Semiconductor Industry Overcome Thermal Design Challenges in Multi-Die Systems?
- Samsung Foundry and Synopsys Accelerate Multi-Die System Design
Latest Blogs
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security