Can GPUs Accelerate Digital Design Implementation?
When it comes to digital design implementation, each step in the RTL-to-GDSII process is highly compute intense. At the SoC level, you’re evaluating various floorplan options of hundreds of partitions to minimize latency in the interconnections and drive greater efficiencies. Once you’ve determined your floorplan, then it’s time to move on to the rest of the steps within every partition toward full-chip implementation and signoff. Since compute requirements are already high at each step, and further multiplied by the number of partitions, this begs the questions: Are the CPUs traditionally used in digital design running out of capacity? Would GPUs be able to fulfill the compute demand?
Today, GPUs are noted for handling the most demanding workloads of applications like artificial intelligence (AI)/machine learning (ML), gaming, and high-performance computing. As chips grow larger and more complex, it may also be time to add digital chip design implementation to this list.
To read the full article, click here
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
Related Blogs
- 4 Ways that Digital Techniques Can Speed Up Memory Design and Verification
- Can the Semiconductor Industry Overcome Thermal Design Challenges in Multi-Die Systems?
- Samsung Foundry and Synopsys Accelerate Multi-Die System Design
- How AI Is Enabling Digital Design Retargeting to Maximize Productivity
Latest Blogs
- Rivian’s autonomy breakthrough built with Arm: the compute foundation for the rise of physical AI
- AV1 Image File Format Specification Gets an Upgrade with AVIF v1.2.0
- Industry’s First End-to-End eUSB2V2 Demo for Edge AI and AI PCs at CES
- Integrating Post-Quantum Cryptography (PQC) on Arty-Z7
- UA Link PCS customizations from 800GBASE-R Ethernet PCS Clause 172