4 Ways that Digital Techniques Can Speed Up Memory Design and Verification
Memory continues to be in big demand for our data-driven, smart everything world. It’s what enables your smartphone to store photos, videos, and apps; your car to brake ahead of a roadway obstacle; and building security systems to recognize your face and let you enter. Its use for storage in data-intensive applications and in support of real-time processing performance is ushering in a shift from general-purpose memory devices to more customized chips that meet specific performance, power, and bandwidth targets for applications like AI, servers, and automotive.
Globally, the market for memory chips is anticipated to grow from U.S. $154.4 billion in 2021 to U.S. $410.71 billion by 2027, according to IMARC Group market research firm. Increasing digitization and automation in the electronics industry, along with increasing prevalence of semiconductors in a variety of systems, are driving the market growth.
Yet, in the face of growing demands for more memory, more application-specific variants of memory chips, and complex architectures such as multi-die, development teams are facing serious time-to-market pressures. One way to accelerate turnaround time is to shift the memory development process left, while adopting design and verification techniques that have proven themselves on the digital side.
Read on to learn about four key ways that digitizing design and verification in the memory space—particularly the memory circuitry on the boundary of the array—can generate substantial productivity and turnaround time benefits.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related Blogs
- How to Speed Up Simulation Coverage Closure with Formal Verification Tools
- Cadence ONFI 4.0 Flash Memory IP Increases Data Access to 800Mtps and Reduces Power Up to 50%
- High Speed Memory in Smart Phones: MIPI UniPro v1.8 for JEDEC UFS v3.0
- DDR5/4/3/2: How Memory Density and Speed Increased with each Generation of DDR
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production