Accelerate Debug Productivity of Complex Serial Protocols
Debugging the complex serial protocols is the biggest challenge verification engineers face. It’s one of the most time and effort consuming activity affecting the schedule of every project. Traditional debug methodologies use a combination of loosely connected waveforms, log files, messages, and documentation, which are insufficient for productive debugging. Debugging SoC and block level issues using log files is tedious and time consuming. Design problems that appear in the later phases of the development cycle can be extremely difficult to track down and debug, thus putting project schedules at risk.
Is there a way to simplify the debug process and performance? Wouldn’t it be easier if one could look at packets and transactions instead of signals? In this blog, we will discuss some the challenges users face to debug complex protocols; and highlight a GUI-based transaction debug solution that is both easy and fast. . We will take USB as an example, discussing the complex features, debug challenges and corresponding solution.
Let’s look at the complexity of the USB 3.0 protocol and its corresponding debugging challenges. The USB 3.0 protocol specifies that the host controls the communication with devices by exchanging the following types of signaling, and packets:
To read the full article, click here
Related Semiconductor IP
- Special Purpose Low (Statistical) offset Operation Amplifier
- Rail to Rail Input and Output Operational Amplifier
- Special Purpose Low offset Operational Amplifier
- Special Purpose Low offset Operational Amplifier
- High Current, Low offset fast Operation Amplifier
Related Blogs
- Accelerate Debug Productivity of Complex Serial Protocols
- Protocol Debug for Complex SoCs
- Early, Accurate, and Faster Exploration and Debug of Worst-Case Design Failures with ML-Based Spectre FMC Analysis
- How to Unlock the Power of Operator Fusion to Accelerate AI
Latest Blogs
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security
- Ceva-XC21 and Ceva-XC23 DSPs: Advancing Wireless and Edge AI Processing
- Cadence Silicon Success of UCIe IP on Samsung Foundry’s 5nm Automotive Process
- Empowering your Embedded AI with 22FDX+