Accelerate Debug Productivity of Complex Serial Protocols
Debugging the complex serial protocols is the biggest challenge verification engineers face. It’s one of the most time and effort consuming activity affecting the schedule of every project. Traditional debug methodologies use a combination of loosely connected waveforms, log files, messages, and documentation, which are insufficient for productive debugging. Debugging SoC and block level issues using log files is tedious and time consuming. Design problems that appear in the later phases of the development cycle can be extremely difficult to track down and debug, thus putting project schedules at risk.
Is there a way to simplify the debug process and performance? Wouldn’t it be easier if one could look at packets and transactions instead of signals? In this blog, we will discuss some the challenges users face to debug complex protocols; and highlight a GUI-based transaction debug solution that is both easy and fast. . We will take USB as an example, discussing the complex features, debug challenges and corresponding solution.
Let’s look at the complexity of the USB 3.0 protocol and its corresponding debugging challenges. The USB 3.0 protocol specifies that the host controls the communication with devices by exchanging the following types of signaling, and packets:
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Accelerate Debug Productivity of Complex Serial Protocols
- Protocol Debug for Complex SoCs
- The Wonders of Machine Learning: Tackling Lint Debug Quickly with Root-Cause Analysis (Part 3)
- Early, Accurate, and Faster Exploration and Debug of Worst-Case Design Failures with ML-Based Spectre FMC Analysis
Latest Blogs
- FiRa 3.0 Use Cases: Expanding the Future of UWB Technology
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits