5 Strategies for Protecting Your Advanced SoC Designs from Security Breaches
Automobiles drive themselves. Drones deliver packages. Robots clear minefields. AI advises your doctor. That future is not far away, but what if a bad actor takes over your car, the delivery drone, or the autonomous robot? What if the AI used for human safety or health turns deadly? While software has long been the focus in the security space, today’s more complex devices and increased attack surface extend the security conversation not only to hardware, but also through software, the silicon lifecycle, and the entire supply chain. As a result, a fourth dimension has been added to the traditional power, performance, and area (PPA) trifecta of semiconductor design concerns—security.
Everything is Complex and Connected, Manage Device Security Accordingly
Today, advanced semiconductors are single packages comprised of disparate components, multiple dies that enable new levels of systemic PPA efficiency. But it’s precisely that complexity that provides greater opportunity for security threats to do damage.
To read the full article, click here
Related Semiconductor IP
- Temperature Glitch Detector
- Clock Attack Monitor
- SoC Security Platform / Hardware Root of Trust
- SPI to AHB-Lite Bridge
- Octal SPI Master/Slave Controller
Related Blogs
- Standing the Test of Time: How Advanced Protocol Verification Creates Bulletproof SoC Designs
- Three Smart Steps to Quickly Test a Register Map for Your Entire SoC
- Statistical Profile Extension: extracting value from SPE for SoC Telemetry
- ETAS and Rambus Offer Integrated Software and Hardware Security Solution for Automotive Silicon Designs