5 Strategies for Protecting Your Advanced SoC Designs from Security Breaches
Automobiles drive themselves. Drones deliver packages. Robots clear minefields. AI advises your doctor. That future is not far away, but what if a bad actor takes over your car, the delivery drone, or the autonomous robot? What if the AI used for human safety or health turns deadly? While software has long been the focus in the security space, today’s more complex devices and increased attack surface extend the security conversation not only to hardware, but also through software, the silicon lifecycle, and the entire supply chain. As a result, a fourth dimension has been added to the traditional power, performance, and area (PPA) trifecta of semiconductor design concerns—security.
Everything is Complex and Connected, Manage Device Security Accordingly
Today, advanced semiconductors are single packages comprised of disparate components, multiple dies that enable new levels of systemic PPA efficiency. But it’s precisely that complexity that provides greater opportunity for security threats to do damage.
To read the full article, click here
Related Semiconductor IP
- JPEG XL Encoder
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
Related Blogs
- Standing the Test of Time: How Advanced Protocol Verification Creates Bulletproof SoC Designs
- The Next-Generation UCIe IP Subsystem for Advanced Package Designs
- Is your SoC ready for HBM2E - 2x more capacity at 50% more speed
- What's it take to design DDR4 into your next SoC? Newly released DFI 3.0 Spec opens the flood gates for DDR4 design