Is your SoC ready for HBM2E - 2x more capacity at 50% more speed
Advancements in customer visual experience, high-end gaming, cryptocurrencies, AI, and more applications are pushing the need for more extensive graphic and accelerator cards. Compute is becoming increasingly complex as data needs require fast processing times with minimum power consumption. This is where the need for HBM comes into the picture as its most prominent feature is high bandwidth with less power. In a recent blog, we talked about HBM2 memory for graphics, networking and HPC. In this blog, we will go in detail about HBM2E which is an extension of HBM2.
What is the Difference between HBM and HBM2E?
The recent development on HBM2E is sure to bring a shift in the opinion of the GPU market. Its added performance and capacity will overshadow the price factor that was involved with the fabrication. HBM is now being accepted as an industry standard for all high-end graphic cards, networking, AI, supercomputers, and many other fields that require huge memory sizes and bandwidth in a condensed form. As per the latest specifications HBM2E is 50% percent faster and offers double the capacity over its predecessor (HBM2), and provides a much denser solution for larger memory buffers. This could usher in an era of some of the best graphic cards available today.
To read the full article, click here
Related Semiconductor IP
- eDP 2.0 Verification IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- LLM AI IP Core
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
Related Blogs
- Post-quantum security in platform management: PQShield is ready for SPDM 1.4
- What's it take to design DDR4 into your next SoC? Newly released DFI 3.0 Spec opens the flood gates for DDR4 design
- Will your multicore SoC hit the memory wall? Will the memory wall hit your SoC? Does it matter?
- Bluetooth 5 IP is Ready for SoC Integration
Latest Blogs
- From GPUs to Memory Pools: Why AI Needs Compute Express Link (CXL)
- Verification of UALink (UAL) and Ultra Ethernet (UEC) Protocols for Scalable HPC/AI Networks using Synopsys VIP
- Enhancing PCIe6.0 Performance: Flit Sequence Numbers and Selective NAK Explained
- Smarter ASICs and SoCs: Unlocking Real-World Connectivity with eFPGA and Data Converters
- RISC-V Takes First Step Toward International Standardization as ISO/IEC JTC1 Grants PAS Submitter Status