Ultra-low-power DSP design
August 30, 2007 -- dspdesignline.com
 Many emerging applications require extremely low-power DSPs. This article shows how to design such a DSP, using an electrocardiogram application as an example. We show how to achieve low power by tuning the algorithm, processor architecture, and memory system, as well as through clock gating. Throughout the article we present detailed power results to demonstrate the impact of each optimization.
 
 Introduction
 
 A new generation of biomedical monitoring devices is emerging. These applications are typically powered by a tiny battery or an energy scavenger, and have extremely low power budgets. Typical power budgets are around 100 ìW for the whole system, including radio processing, data processing and memories.
 
 To reduce power dissipation of the radio transmitter, system designers often employ feature extraction and/or data compression to reduce the number of bits transmitted. This shifts the power bottleneck from the radio to the data processor, which is the focus of our article. The goal of our work is to create a C-programmable, application-specific DSP optimized for low power. We use a reconfigurable processor from Philips' technology incubator Silicon Hive [4] as starting point. 
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related White Papers
- Low Power Design in SoC Using Arm IP
- Achieving Your Low Power Goals with Synopsys Ultra Low Leakage IO
- A Flexible, Low Power, High Performance DSP IP Core for Programmable Systems-on-Chip
- Ultra Low Power Designs Using Asynchronous Design Techniques (Welcome to the World Without Clocks)
Latest White Papers
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics
- In-DRAM True Random Number Generation Using Simultaneous Multiple-Row Activation: An Experimental Study of Real DRAM Chips
- SPAD: Specialized Prefill and Decode Hardware for Disaggregated LLM Inference