How to test carrier aggregation in LTE-Advanced networks
Dr. Stamatis Georgoulis Aeroflex Test Solutions
6/27/2012 8:28 AM EDT
For LTE-Advanced, 3GPP Release 10 introduced several new features to augment the existing LTE standard, and these are aimed at raising the peak downlink data rate to 1 Gbps and beyond, as well as reducing latency and improving spectrum efficiency. Targets have also been set enabling the highest possible cell edge user throughput to be achieved.
If the high data rate targets are to be met, LTE-Advanced will require a channel bandwidth that is much wider than the 20 MHz currently specified for LTE. This will not be possible with just a single carrier in the limited spectrum bands available to most operators. Consequently, carrier aggregation—the ability to combine multiple carriers scattered around the spectrum—will be a key measure to achieve the wider effective bandwidth that will be required, typically up to 100 MHz. This means that multiple carriers comprised of either contiguous or non-contiguous spectrum need to be added together to allow these wider channel bandwidths—and thus faster data rates—to be achieved.
Implementing carrier aggregation in a network will mean that operators and infrastructure vendors will require a test mobile equipped with carrier aggregation, ahead of real mobile terminals becoming available.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Test engineers must join ASIC flow early
- SoC Test and Verification -> Modular ASICs ease test problems
- SoC Test and Verification -> Testing mixed-signal Bluetooth designs
- SoC Test and Verification -> Coverage analysis essential in ATE
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions