How to build a self-checking testbench
William Kafig, Xilinx
EETimes (2/17/2012 7:15 AM EST)
A testbench, as it’s known in VHDL, or a test fixture in Verilog, is a construct that exists in a simulation environment such as ISim, ModelSim or NCsim. Simulation enables a unit under test (UUT) – typically, your synthesizable FPGA design – to connect to virtual (simulated) components such as memory, communication devices and/or CPUs, and be driven with a known set of stimuli. These stimuli cause the UUT to react and interact with the virtual components. You can view both the stimulus and the reaction as waveforms in the simulation environment.
Here’s quick example to illustrate how to implement a testbench using a simple 8-bit up/down with reset as the FPGA design (UUT). The testbench provides clock, up/down, enable and reset control signals. Figure 1 shows how to connect the UUT (central gray box) to a testbench.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- It's Not My Fault! How to Run a Better Fault Campaign Using Formal
- How a voltage glitch attack could cripple your SoC or MCU - and how to securely protect it
- Four ways to build a CAD flow: In-house design to custom-EDA tool
- How to build a fast, custom FFT from C
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics