How to architect, design, implement, and verify low-power digital integrated circuits
By Andy Eliopoulos, Pinhong Chen, and Dr. Qi Wang, Cadence Design Systems
January 29, 2007 -- edadesignline.com
In recent years, power consumption has moved to the forefront of digital integrated circuit (IC) development concerns. The combination of higher clock speeds, greater functional integration, and smaller process geometries has contributed to significant growth in power density. Furthermore, with every new process generation, leakage power consumption increases at an exponential rate.
It is common to think of low-power designs only in the context of handheld, battery-powered devices such as personal digital assistants (PDAs) and cell phones. And it is certainly fair to say that this class of device is at the top of low-power development concerns. In reality, however, power consumption (and corresponding heat generation) is also of significant interest to semiconductor segments with fixed installations, such as networking, set-top boxes, and computing devices. For example, the InformationWeek "Power Surge" article on 27 February 2006 reported that data center electricity costs are now in the range of US$3.3 billion annually, and it can cost more to cool a data center than it does to lease the floor space in which to house it. Additionally, consumers increasingly demand quieter devices for their living rooms and desktops, and low-power designs help manufacturers eliminate noisy cooling fans from set-top boxes and other products.
January 29, 2007 -- edadesignline.com
In recent years, power consumption has moved to the forefront of digital integrated circuit (IC) development concerns. The combination of higher clock speeds, greater functional integration, and smaller process geometries has contributed to significant growth in power density. Furthermore, with every new process generation, leakage power consumption increases at an exponential rate.
It is common to think of low-power designs only in the context of handheld, battery-powered devices such as personal digital assistants (PDAs) and cell phones. And it is certainly fair to say that this class of device is at the top of low-power development concerns. In reality, however, power consumption (and corresponding heat generation) is also of significant interest to semiconductor segments with fixed installations, such as networking, set-top boxes, and computing devices. For example, the InformationWeek "Power Surge" article on 27 February 2006 reported that data center electricity costs are now in the range of US$3.3 billion annually, and it can cost more to cool a data center than it does to lease the floor space in which to house it. Additionally, consumers increasingly demand quieter devices for their living rooms and desktops, and low-power designs help manufacturers eliminate noisy cooling fans from set-top boxes and other products.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- BCD Technology: A Unified Approach to Analog, Digital, and Power Design
- How to Elevate RRAM and MRAM Design Experience to the Next Level
- How to Design Secure SoCs: Essential Security Features for Digital Designers
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics