Designing low-power sequential circuits using clock gating
Bhanu Khera and Harsh Garg, Freescale Semiconductor India
embedded.com (January 26, 2014)
With shrinking technologies, rapid multiplication of clock frequencies, and increasing emphasis on power reduction, low-power design is taking on a vital role. Design teams can no longer afford to worry only about isolation on big power domains. With most SoCs containing multiple sequential circuits, every little bit counts, thus making it all the more important to design efficient low power designs. These sequential circuits are predominantly used to design finite state machines (FSMs), clock dividers, and counters in modern day designs.
This article describes an efficient way to design low power sequential circuits with effective clock gating with the help of a multi-stage programmable Johnson counter that can be extended to support a wide range of dividing factors, while consuming lower dynamic power compared to conventional circuits.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- 10-bit SAR ADC - XFAB XT018
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
Related Articles
- Sequential clock gating maximizes power savings at IP level
- How to architect, design, implement, and verify low-power digital integrated circuits
- Designing low-power multiprocessor chips
- Power analysis of clock gating at RTL
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor