Designing low-power sequential circuits using clock gating
Bhanu Khera and Harsh Garg, Freescale Semiconductor India
embedded.com (January 26, 2014)
With shrinking technologies, rapid multiplication of clock frequencies, and increasing emphasis on power reduction, low-power design is taking on a vital role. Design teams can no longer afford to worry only about isolation on big power domains. With most SoCs containing multiple sequential circuits, every little bit counts, thus making it all the more important to design efficient low power designs. These sequential circuits are predominantly used to design finite state machines (FSMs), clock dividers, and counters in modern day designs.
This article describes an efficient way to design low power sequential circuits with effective clock gating with the help of a multi-stage programmable Johnson counter that can be extended to support a wide range of dividing factors, while consuming lower dynamic power compared to conventional circuits.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Sequential clock gating maximizes power savings at IP level
- How to architect, design, implement, and verify low-power digital integrated circuits
- Designing low-power multiprocessor chips
- Power analysis of clock gating at RTL
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions