Sequential clock gating maximizes power savings at IP level
Ankur Krishna , chanpreet singh , Kshitij Bajaj , Ritesh Agrawal & Saurabh Shrimal (Freescale Semiconductor)
EDN (February 10, 2015)
Power Management is one of the major chip design challenges amongst all the dimensions of the design cycle. It poses problems for packaging, portability, & reliability (PPR), e.g.,“high system cost of fans – cooling, extending battery life & reduced electron migration” at later stage. Power saving and power dissipation calculation at a higher abstraction level than gate level becomes mandatory in this fast growing and restrictive time to market. Power explorations and its trade-off with area/timing becomes essential at the RTL abstraction level rather than waiting for this data after gate level runs. IP designers have a lot of flexibility to iterate to find ways to meet power budget at this point.
In this paper we talk about design exploration using the PowerPro tool. For analysis of power optimization based on this tool, we have included Advanced Driver Assistance System (ADAS) and cluster IPs with high speed processing requirements. These IPs have multiple complex operation requirements within a clock period, making them ideal candidates for power saving. The IPs under consideration are image processors, high-speed bus fabrics for a memory controller, display controllers, and video codecs.
To read the full article, click here
Related Semiconductor IP
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
Related White Papers
- Context Based Clock Gating Technique For Low Power Designs of IoT Applications - A DesignWare IP Case Study
- Power analysis of clock gating at RTL
- Designing low-power sequential circuits using clock gating
- Achieving Low power with Active Clock Gating for IoT in IPs
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS