Time is right for clockless design
By Alban d’Halluin
edadesignline.com (June 10, 2010)
In the last few decades the semiconductor industry has successfully and dramatically improved the capabilities of electronics, particularly in the areas of speed and power consumption. Each new technology node has brought the potential for even faster speed at even lower power levels.
While Moore’s Law has always been theoretically faithful in terms of its continued march forward with transistor density, the complexity of designing to advanced geometries flirting with atomic sizes has resulted in a frustrating paradox: it is not easy to take full advantage of the new nodes because high variations require design margins that limit the intrinsic technology potential.
Today, design engineers must evaluate tradeoffs between power and speed, typically compromising on one or the other. Yet, in an uncompromising consumer market that demands both higher performance AND longer battery life, what to “leave on the table” is a difficult and painstaking decision.
Designers have long sought the Holy Grail of a solution to maximize the performance vs. power trade-off. Fast designs that meet stringent power requirements. The ying and yang of complex IC design.
One such approach that has been looked at for many years as having great promise is asynchronous or clockless design technology. This technique has always seemed to be academically and conceptually a very viable method, but various attempts at making it a commercial success have never gotten traction.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Clockless IC designs are ready to compete
- PCIe goes Clockless -- Achieving independent spread-spectrum clocking without SSC isolation
- Design & Verify Virtual Platform with reusable TLM 2.0
- Dynamic Margining: The Minima Approach to Near-threshold Design
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions