The evolution of embedded devices: Addressing complex design challenges
Phil Burr, Arm
embedded.com (September 18, 2018)
Embedded devices used to be relatively straightforward to design before the Internet of Things. The designer of an appliance, industrial controller or environmental sensor only needed to interface the input signals, process with a microcontroller and provide output control. Systems were standalone; and other than reverse engineering, there was no incentive for a hacker to access a system.
With the introduction of the smartphone, we now expect our devices to be smart, upgradable and accessible over the Internet. Security is not optional – if security is not taken seriously, data, brand reputation and revenue streams will all be affected. Also, embedded systems are becoming more complex and you can’t be an expert in everything! Fortunately, you can use existing standards and stack libraries to get a project completed in a timely, secure way.
This article outlines the key design challenges an embedded developer faces today, and some of the new technologies that will help designers address these challenges.
To read the full article, click here
Related Semiconductor IP
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
Related White Papers
- The Future of Embedded FPGAs - eFPGA: The Proof is in the Tape Out
- MIPI in next generation of AI IoT devices at the edge
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- Understanding the Deployment of Deep Learning algorithms on Embedded Platforms
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS