A Simple New Approach to Hardware Software Co-Verification
By Ernst Zwingenberger, El Camino GmbH
Mar 5 2007 (1:30 AM), Embedded.com
Coverage-driven verification (CDV) has generated remarkable interest in recent years. Because of its enormously comprehensive capabilities, more and more verification teams are now relying on the CDV approach.
However, implementing a coverage-driven verification environment in a system-level environment requires developing a sequence library, which has proven to be a time-consuming task.
To configure, or reconfigure the library, requires planning for and testing a huge number of interactions with the various portions of the device under test. The challenge poses a significant bottleneck in the verification process of a complex system or device.
A recent project of one of our customers provides a great example. One of their SoCs for use in an HDTV system presented some serious complexity. The SoC included a CPU subsystem, memory manager, and multiple bus interconnects. To test the subsystem, we were looking at more than 6000 register fields - a potential verification bottleneck to say the least.
Mar 5 2007 (1:30 AM), Embedded.com
Coverage-driven verification (CDV) has generated remarkable interest in recent years. Because of its enormously comprehensive capabilities, more and more verification teams are now relying on the CDV approach.
However, implementing a coverage-driven verification environment in a system-level environment requires developing a sequence library, which has proven to be a time-consuming task.
To configure, or reconfigure the library, requires planning for and testing a huge number of interactions with the various portions of the device under test. The challenge poses a significant bottleneck in the verification process of a complex system or device.
A recent project of one of our customers provides a great example. One of their SoCs for use in an HDTV system presented some serious complexity. The SoC included a CPU subsystem, memory manager, and multiple bus interconnects. To test the subsystem, we were looking at more than 6000 register fields - a potential verification bottleneck to say the least.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- New Realities Demand a New Approach to System Verification and Validation
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
- A new approach to hardware design project management
Latest White Papers
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- An AUTOSAR-Aligned Architectural Study of Vulnerabilities in Automotive SoC Software
- Attack on a PUF-based Secure Binary Neural Network