New Realities Demand a New Approach to System Verification and Validation
By Vijay Chobisa, Siemens
EETimes Europe (November 22, 2024)
The landscape for advanced chip design is changing dramatically and demands new approaches to verification and validation.
The landscape for advanced chip design is changing dramatically and demands new approaches to verification and validation. Many of the most ambitious designs are developed inside system houses at advanced process nodes and larger gate counts. These designs depend ond sophisticated on-die networks, pools of static random-access memory (SRAM), and complex power, clock and test architectures. Perhaps the most striking change concerns their applications, which include AI acceleration, high-performance compute, and networking and communications. They are used exclusively by the systems house, often in one specific hardware environment and frequently with a specific software workload.
System-specific chip designs require verification that focuses on ensuring the system works. Engineers use conventional register-transfer level (RTL) verification and validation of the entire system to prove correct operation of the full software stack and application code. They employ verification that checks interactions between the chip and its board, and possibly with the mechanical subsystems within the overall design.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- A New Approach to In-System Silicon Validation and Debug
- A new approach to improving system performance
- How FPGA technology is evolving to meet new mid-range system requirements
- Agile Analog's Approach to Analog IP Design and Quality --- Why "Silicon Proven" is NOT What You Think
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions