3D-IC Design: The Challenges of 2.5D versus 3D
Samta Bansal, Senior Product Marketing Manager, Cadence Design Systems
EETimes (9/14/2011 11:29 AM EDT)
In October 2010 Xilinx announced its use of a 2.5D through-silicon via (TSV) approach for their Virtex-7 FPGAs. This was followed by announcements from TSMC, Samsung, Nokia, Micron, and Elpida about using 3D-ICs with TSVs, showing that TSV technology has emerged as a proven and viable technology that offers compelling advantages in power, performance, form factor, and time to market. By making it possible to stack analog, digital, logic, and memory dies at different process nodes, 3D-ICs offer what may be the best alternative to the skyrocketing costs of advanced process nodes.
This article examines the terminology associated with 3D-ICs and reviews what 2.5D is, what 3D is, and what the tradeoffs are. It then introduces some 3D-IC design challenges such as system exploration, floorplanning, analysis, and design for test (DFT), and shows how designs will evolve as 3D-IC goes on to become a necessity for managing power, performance, form factor, and cost goals.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- A modeling approach for power integrity simulation in 3D-IC designs
- A Heuristic Approach to Fix Design Rule Check (DRC) Violations in ASIC Designs @7nm FinFET Technology
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Increase battery life of Consumer Products using architecture simulation
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events