A modeling approach for power integrity simulation in 3D-IC designs
Vinayakam Subramanian (Apache Design, Inc.) and Jairam Sukumar (Texas Instruments)
4/27/2012 10:10 AM EDT
Designing reliable three-dimensional (3D) system-on-chips (SoCs) is extremely complex, and critical for the next level of integration in silicon design. In 3D integrated circuit (3D-IC) vertical stacked-die architecture, individual die are connected directly by Through-Silicon-Vias (TSVs) and micro-bumps. Simulation of 3D-ICs for power integrity needs to model the 3D structure, including all the ICs and their TSV interconnects. Some challenges include modeling and integrating third-party application SoCs or memories into the current design framework and performing a complete analysis. This article outlines an approach for concurrent analysis of the 3D-IC power grid, as well as a chip model-based analysis, and how analysis based on a chip macro-model can yield the same results as concurrent full-chip analysis, resulting in significant runtime benefits.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- Analog and Power Management Trends in ASIC and SoC Designs
- Achieving Lower Power, Better Performance, And Optimized Wire Length In Advanced SoC Designs
- Memory solution addressing power and security problems in embedded designs
- Reclaiming lost yield through methodical power integrity optimization
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant