A modeling approach for power integrity simulation in 3D-IC designs
Vinayakam Subramanian (Apache Design, Inc.) and Jairam Sukumar (Texas Instruments)
4/27/2012 10:10 AM EDT
Designing reliable three-dimensional (3D) system-on-chips (SoCs) is extremely complex, and critical for the next level of integration in silicon design. In 3D integrated circuit (3D-IC) vertical stacked-die architecture, individual die are connected directly by Through-Silicon-Vias (TSVs) and micro-bumps. Simulation of 3D-ICs for power integrity needs to model the 3D structure, including all the ICs and their TSV interconnects. Some challenges include modeling and integrating third-party application SoCs or memories into the current design framework and performing a complete analysis. This article outlines an approach for concurrent analysis of the 3D-IC power grid, as well as a chip model-based analysis, and how analysis based on a chip macro-model can yield the same results as concurrent full-chip analysis, resulting in significant runtime benefits.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Analog and Power Management Trends in ASIC and SoC Designs
- Achieving Lower Power, Better Performance, And Optimized Wire Length In Advanced SoC Designs
- Optimizing performance, power, and area in SoC designs using MIPS multi-threaded processors
- Memory solution addressing power and security problems in embedded designs
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models