Basics of porting C-code to and between ARM CPUs: ARM7TDMI and Cortex-M0
Joseph Yiu, ARM Ltd.
EETimes, 10/17/2011 10:55 PM EDT
In the first of a three part series, Joseph Yiu, author of “The definitive guide to the ARM Cortex-M0,” provides some basic guidelines for porting your code base from other 8/16 bit MCUs to ARM and between various ARM processors starting here with the ARM 7TDMI and Cortex-M0.
As software reuse becomes more common, software porting is becoming a more common task or embedded software developers. In this three part series, we will look into differences between various common ARM processors for microcontrollers and what areas in a program need to be modified when porting software between them.
This series will conclude with issues relating to the software porting of software from 8-bit and 16-bit architectures.
To read the full article, click here
Related Semiconductor IP
- JPEG XL Encoder
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
Related Articles
- Debugging hard faults in ARM Cortex-M0 based SoCs
- An introduction to ARM Cortex-M0 DesignStart
- Amba bus may move MIPS into ARM territory
- Embedded Systems -> VLIW chip complicates pSOS porting
Latest Articles
- CircuitGuard: Mitigating LLM Memorization in RTL Code Generation Against IP Leakage
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration