Debugging hard faults in ARM Cortex-M0 based SoCs
Shashikant Joshi & Hanumanthaiah Shruti (Cypress Semiconductors)
embedded.com (February 08, 2017)
Programmable system-on-chip (PSoC) architectures integrate a wide range of capabilities, including MCU cores like the Cortex-M0, programmable analog blocks (PAB), programmable digital blocks (PDB), programmable interconnect and routing, a wide range of interfaces and peripherals, and advanced capabilities such as capacitive touch sensing. These architectures over many advantages over traditional microcontrollers and can substantially reduce design time and system bill of materials (BOM) cost.
As the complexity of programmable system-on-chip architectures and their MCU increases, so do the issues that can occur at each stage of design. One common issue developers face in Cortex-M0-based embedded systems is the hard fault. In some cases, we might get lucky and be able to quickly locate the source of the hard fault. However, most of the time chasing down a hard fault can be very time consuming. In this article, we will discuss some common errors programmers make and how to debug the hard fault caused by these errors.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Method for Booting ARM Based Multi-Core SoCs
- Automating Hardware-Software Consistency in Complex SoCs
- An IP core based approach to the on-chip management of heterogeneous SoCs
- Verification of IP Core Based SoC's
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension