Debugging hard faults in ARM Cortex-M0 based SoCs
Shashikant Joshi & Hanumanthaiah Shruti (Cypress Semiconductors)
embedded.com (February 08, 2017)
Programmable system-on-chip (PSoC) architectures integrate a wide range of capabilities, including MCU cores like the Cortex-M0, programmable analog blocks (PAB), programmable digital blocks (PDB), programmable interconnect and routing, a wide range of interfaces and peripherals, and advanced capabilities such as capacitive touch sensing. These architectures over many advantages over traditional microcontrollers and can substantially reduce design time and system bill of materials (BOM) cost.
As the complexity of programmable system-on-chip architectures and their MCU increases, so do the issues that can occur at each stage of design. One common issue developers face in Cortex-M0-based embedded systems is the hard fault. In some cases, we might get lucky and be able to quickly locate the source of the hard fault. However, most of the time chasing down a hard fault can be very time consuming. In this article, we will discuss some common errors programmers make and how to debug the hard fault caused by these errors.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Method for Booting ARM Based Multi-Core SoCs
- Automating Hardware-Software Consistency in Complex SoCs
- An IP core based approach to the on-chip management of heterogeneous SoCs
- Verification of IP Core Based SoC's
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models