TSMC's Chip Scaling Efforts Reach Crossroads at 2nm
By Alan Patterson, EETimes (June 7, 2021)
Perpetuating Moore’s Law — the observation that the transistor density in a typical chip doubles every two years — poses a number of challenges at the 3nm node, yet Taiwan Semiconductor Manufacturing Corp. (TSMC) remains optimistic.
There are many predictions Moore’s Law is likely to hit a wall soon, but “how soon?” is open to debate. Also, there are technologies that promise ongoing increases in performance that are not dependent on doubling transistor density. The timing of all that will have far-reaching implications. At last week’s TSMC 2021 Technology Symposium, TSMC CEO C. C. Wei gave the example of data centers, which consume over one percent of global electricity generated.
“Estimates suggest global electricity usage from data centers is projected to grow from five to forty times between 2010 to 2030. Why do projections vary so widely?” Wei asked. “Divergent estimates are partly due to the difficulty of making an accurate projection of our footprint. There are too many variables to consider, including whether Moore’s Law can continue.”
To read the full article, click here
Related Semiconductor IP
- TSMC CLN3FFP HBM4 PHY
- Wi-Fi 7(be) RF Transceiver IP in TSMC 22nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- HBM3 PHY V2 (Hard) - TSMC N3P
- USB4 Gen3 x2-lane PHY, TSMC N5, 1.2V, N/S orientation, type-C
Related News
- EDA toolset parade at TSMC's U.S. design symposium
- Dream Chip and Cadence Demo Automotive SoC Featuring Tensilica AI IP at embedded world 2024
- Weebit Nano moves closer to availability at DB HiTek; tapes out first chip
- Intel, TSMC to detail 2nm processes at IEDM
Latest News
- Jim Keller: ‘Whatever Nvidia Does, We’ll Do The Opposite’
- FlexGen Streamlines NoC Design as AI Demands Grow
- IntoPIX Presents Its New Titanium Software Suite: Empowering AV-Over-IP Workflows With Speed, Quality & Interoperability
- Global Semiconductor Sales Increase 2.5% Month-to-Month in April
- Speedata Raises $44M to Launch First-Ever Chip Designed Specifically for Accelerating Big Data Analytics - Compute's Second Largest Workload