Synopsys Accelerates Cloud Computing SoC Designs with New Die-to-Die PHY IP in Advanced 7nm FinFET Process
DesignWare Die-to-Die PHY Enables Ultra- and Extra-Short Reach Connectivity in Large, Multi-Chip Module Designs
MOUNTAIN VIEW, Calif., Oct. 29, 2019 -- Synopsys, Inc. (Nasdaq: SNPS) today announced its DesignWare® Die-to-Die PHY IP for ultra- and extra-short reach connectivity in multi-chip modules (MCM) for hyperscale data center, AI, and networking designs. The DesignWare Die-to-Die PHY IP supports NRZ and PAM-4 signaling from 2.5G to 112G data rates, delivering maximum throughput per die edge for large MCM designs. To improve SoC yield, the Die-to-Die PHY allows for partitioning of large dies into smaller dies while offering trade-offs for power, bandwidth per beachfront, latency, and reach. The DesignWare Die-to-Die PHY is the latest addition to Synopsys' comprehensive cloud computing IP solution consisting of silicon-proven 112G/56G Ethernet HBM2/2E, DDR5/4, and PCI Express 5.0 controller, PHY, and verification IP.
Synopsys provides designers with a comprehensive routing feasibility analysis, packages substrate guidelines, signal and power integrity models, and crosstalk analysis for fast integration of the DesignWare Die-to-Die PHY into SoCs. The half-duplex transmitter and receiver in a X16 lane configuration delivers 1.8 terabit-per-second per millimeter unidirectional bandwidth for high throughput die-to-die connectivity. To meet the power requirements of SoCs in advanced FinFET processes, the Die-to-Die PHY delivers less than one picojoule per bit (pJ/bit) for ultra-low-power die-to-die and die-to-optical engine connectivity. The DesignWare Die-to-Die PHY IP is compliant with the OIF CEI-112G and CEI-56G standards for ultra-short reach (USR) and extra-short reach (XSR) links.
"Advanced SoCs for high-end data center and networking applications are reaching maximum reticle size limits, requiring designers to partition the SoC into smaller modular dies," said John Koeter, vice president of marketing for IP at Synopsys. "The DesignWare Die-to-Die PHY IP with leading power, performance, and area is enabling our customers to meet their short reach connectivity requirements in designs for the most advanced FinFET processes and deliver differentiated products to the market quickly."
Availability
The silicon design kit for the DesignWare Die-to-Die PHY IP in 7nm FinFET process is available now.
About DesignWare IP
Synopsys is a leading provider of high-quality, silicon-proven IP solutions for SoC designs. The broad DesignWare IP portfolio includes logic libraries, embedded memories, embedded test, analog IP, wired and wireless interface IP, security IP, embedded processors, and subsystems. To accelerate prototyping, software development, and integration of IP into SoCs, Synopsys' IP Accelerated initiative offers IP prototyping kits, IP software development kits, and IP subsystems. Synopsys' extensive investment in IP quality, comprehensive technical support, and robust IP development methodology enable designers to reduce integration risk and accelerate time-to-market. For more information on DesignWare IP, visit https://www.synopsys.com/designware.
About Synopsys
Synopsys, Inc. (Nasdaq: SNPS) is the Silicon to Software™ partner for innovative companies developing the electronic products and software applications we rely on every day. As the world's 15th largest software company, Synopsys has a long history of being a global leader in electronic design automation (EDA) and semiconductor IP and is also growing its leadership in software security and quality solutions. Whether you're a system-on-chip (SoC) designer creating advanced semiconductors, or a software developer writing applications that require the highest security and quality, Synopsys has the solutions needed to deliver innovative, high-quality, secure products. Learn more at www.synopsys.com.
Related Semiconductor IP
- Die-to-Die PHY
- TSMC CLN3FFE GLink 2.3LL Die-to-Die PHY
- TSMC CLN5FF GLink 2.0 Die-to-Die PHY
- TSMC CLN5FF GLink 2.3LL Die-to-Die PHY
- TSMC CLN5FF Glink 2.0 Die-to-Die PHY
Related News
- Synopsys Successfully Tapes Out Broad IP Portfolio for TSMC 7-nm FinFET Process
- eSilicon announces 7nm FinFET ASIC design win
- TSMC Certifies Synopsys Design Platform for High-performance 7-nm FinFET Plus Technology
- Mentor enhances tool portfolio for TSMC 5nm FinFET and 7nm FinFET Plus processes and Wafer-on-Wafer stacking technology
Latest News
- BrainChip Provides Low-Power Neuromorphic Processing for Quantum Ventura’s Cyberthreat Intelligence Tool
- Ultra Accelerator Link Consortium (UALink) Welcomes Alibaba, Apple and Synopsys to Board of Directors
- CAST to Enter the Post-Quantum Cryptography Era with New KiviPQC-KEM IP Core
- InPsytech Announces Finalization of UCIe IP Design, Driving Breakthroughs in High-Speed Transmission Technology
- Arm Announces Appointment of Eric Hayes as Executive Vice President, Operations