TSMC Certifies Synopsys Design Platform for High-performance 7-nm FinFET Plus Technology
Synopsys Design Platform Delivers High-performance, High-density Designs
MOUNTAIN VIEW, Calif. -- April 30, 2018 -- Synopsys, Inc. (Nasdaq: SNPS) today announced certification of the Synopsys Design Platform with TSMC's latest Design Rule Manual (DRM) for advanced 7-nanometer (nm) FinFET Plus process technology. With several test chips taped out and production designs currently under development by multiple customers, this certification by TSMC enables a wide range of designs from high-performance computing and high-density to low-power mobile applications using the Synopsys Design Platform.
This certification is a milestone for TSMC's extreme ultraviolet lithography (EUV) process that enables significant area savings while maintaining high performance when compared to non-EUV process nodes.
The Synopsys Design Platform, anchored by Design Compiler® Graphical synthesis and IC Compiler™ II place-and-route tools, has been enhanced to take full advantage of TSMC's 7-nm FinFET Plus for high-performance designs. Design Compiler Graphical is capable of automatically inserting via pillar structures to boost performance and prevent signal electromigration (EM) violations, and can pass the information to IC Compiler II for further optimization. It also automatically applies non-default rules (NDR) during synthesis and performs layer-aware optimization to improve design performance. These optimizations, including IC Compiler II bus routing, continue throughout the place-and-route flow to meet stringent delay-matching requirements of high-speed network.
PrimeTime® timing analysis advanced waveform propagation (AWP) and parametric on-chip variation (POCV) technologies have been optimized to address increased waveform distortion and non-Gaussian variation effects of higher performance and lower voltage operation. In addition, PrimeTime's physically-aware signoff has been expanded to support via-pillars.
Synopsys has enhanced the Design Platform to perform physical implementation, parasitic extraction, physical verification, and timing analysis to support TSMC's WoW technology. The physical implementation flow with IC Compiler II provides full support for wafer staking designs, from initial die floorplan preparation to placement and assignment of bumps to implementation of die routing. Verification is done by IC Validator for DRC/LVS checks, and Synopsys' StarRC™ tool performs parasitic extraction.
"Ongoing collaboration with Synopsys and early customer engagements on TSMC's 7-nanometer FinFET Plus process technology are delivering differentiated platform solutions that help our mutual customers bring innovative new products to market faster," said Suk Lee, senior director of the Design Infrastructure Marketing Division at TSMC. "Certification of the Synopsys Design Platform enables our mutual customers' designs in our first mass-production, EUV-enabled technology."
"Our collaboration with TSMC on their mass-production 7-nanometer FinFET Plus process allows companies to confidently begin designing their increasingly large SoC and multi-die chips with the highly-differentiated Synopsys Design Platform," said Michael Jackson, corporate vice president of marketing and business development for the Design Group at Synopsys. "Certification on TSMC's 7-nanometer FinFET Plus process enables our customers to benefit from significant power, performance, and area improvements of an advanced EUV process, while accelerating time-to-market for their differentiated products."
About Synopsys
Synopsys, Inc. (Nasdaq: SNPS) is the Silicon to Software™ partner for innovative companies developing the electronic products and software applications we rely on every day. As the world's 15th largest software company, Synopsys has a long history of being a global leader in electronic design automation (EDA) and semiconductor IP and is also growing its leadership in software security and quality solutions. Whether you're a system-on-chip (SoC) designer creating advanced semiconductors, or a software developer writing applications that require the highest security and quality, Synopsys has the solutions needed to deliver innovative, high-quality, secure products. Learn more at www.synopsys.com.
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related News
- Mentor enhances tool portfolio for TSMC 5nm FinFET and 7nm FinFET Plus processes and Wafer-on-Wafer stacking technology
- Synopsys and TSMC Streamline Multi-Die System Complexity with Unified Exploration-to-Signoff Platform and Proven UCIe IP on TSMC N3E Process
- GUC Tapes Out Complex 3D Stacked Die Design on Advanced FinFET Node Using Cadence Integrity 3D-IC Platform
- TSMC and Synopsys Bring Breakthrough NVIDIA Computational Lithography Platform to Production
Latest News
- BrainChip Provides Low-Power Neuromorphic Processing for Quantum Ventura’s Cyberthreat Intelligence Tool
- Ultra Accelerator Link Consortium (UALink) Welcomes Alibaba, Apple and Synopsys to Board of Directors
- CAST to Enter the Post-Quantum Cryptography Era with New KiviPQC-KEM IP Core
- InPsytech Announces Finalization of UCIe IP Design, Driving Breakthroughs in High-Speed Transmission Technology
- Arm Announces Appointment of Eric Hayes as Executive Vice President, Operations