IBM, Samsung Unveil VTFET to Extend Moore's Law
By Stefani Munoz, EETimes (December 14, 2021)
IBM and Samsung Electronics claimed a breakthrough in semiconductor design based on a new IBM’s architecture touted as enabling an 85-percent reduction in power consumption.
The partners said the Vertical Transport Field-Effect Transistors (VTFET) scheme offers greater power efficiency over FinFET designs, potentially extending Moore’s Law scaling beyond current two-dimensional nanosheet thresholds.
FinFETs are generally designed to lie flat atop a wafer to allow electric currents to flow horizontally. Compared to a planar transistor, FinFETs help reduce power leakage while providing greater device density.
Unlike FinFETs, the companies said VTFETs are situated perpendicular to a chip substrate, allowing electric currents to flow vertically. The companies claim the design could, for example, extend smartphone battery life beyond a week without requiring a charge, according to IBM’s blog post.
To read the full article, click here
Related Semiconductor IP
- Configurable CPU tailored precisely to your needs
- Ultra high-performance low-power ADC
- HiFi iQ DSP
- CXL 4 Verification IP
- JESD204E Controller IP
Related News
- Moore Microprocessor Portfolio (MMP) Inventor Files Lawsuit against TPL Group
- Moore's Law could enter the fourth dimension--via the third
- Moore's Law threatened by lithography woes
- Broadcom: Time to prepare for the end of Moore's Law
Latest News
- GlobalFoundries and Renesas Expand Partnership to Accelerate U.S. Semiconductor Manufacturing
- Fraunhofer IPMS develops new 10G TSN endpoint IP Core for deterministic high-speed Ethernet networks
- A new CEO, a cleared deck: Is Imagination finally ready for a deal?
- SkyeChip’s UCIe 3.0 Advanced Package PHY IP for SF4X Listed on Samsung Foundry CONNECT
- Victor Peng Joins Rambus Board of Directors