IBM, Samsung Unveil VTFET to Extend Moore's Law
By Stefani Munoz, EETimes (December 14, 2021)
IBM and Samsung Electronics claimed a breakthrough in semiconductor design based on a new IBM’s architecture touted as enabling an 85-percent reduction in power consumption.
The partners said the Vertical Transport Field-Effect Transistors (VTFET) scheme offers greater power efficiency over FinFET designs, potentially extending Moore’s Law scaling beyond current two-dimensional nanosheet thresholds.
FinFETs are generally designed to lie flat atop a wafer to allow electric currents to flow horizontally. Compared to a planar transistor, FinFETs help reduce power leakage while providing greater device density.
Unlike FinFETs, the companies said VTFETs are situated perpendicular to a chip substrate, allowing electric currents to flow vertically. The companies claim the design could, for example, extend smartphone battery life beyond a week without requiring a charge, according to IBM’s blog post.
To read the full article, click here
Related Semiconductor IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- 1.8V/3.3V GPIO With I2C Compliant ODIO in GF 55nm
- Verification IP for UALink
Related News
- Moore Microprocessor Portfolio (MMP) Inventor Files Lawsuit against TPL Group
- Moore's Law could enter the fourth dimension--via the third
- Moore's Law threatened by lithography woes
- Broadcom: Time to prepare for the end of Moore's Law
Latest News
- EXTOLL received GlobalFoundries Award for “Interface IP Partner of the Year”
- AiM Future and Franklin Wireless Sign MOU to Jointly Develop Lightweight AI Model and High-Efficiency 1 TOPS AI SoC Chipset
- GlobalFoundries and Silicon Labs Partner to Scale Industry-Leading Wi-Fi Connectivity
- GlobalFoundries Announces Availability of 22FDX+ RRAM Technology for Wireless Connectivity and AI Applications
- GlobalFoundries Announces Production Release of 130CBIC SiGe Platform for High-Performance Smart Mobile, Communication and Industrial Applications