Why SRAM PUF Technology Is the Bedrock of Dependable Security in Any Chip
The connected world we live in today depends on billions of chips. The sheer volume of chips required for a functioning society is staggering. But what is equally remarkable is the technology that secures them.
Without robust security, even the most sophisticated chips would be unable to fulfill their purpose. Data would be at constant risk, trust would be nonexistent, and regulatory compliance would be impossible. Static Random-Access Memory Physical Unclonable Function (SRAM PUF) technology is a vital asset in the fight against the cyber threats that are an ever-present reality, helping to protect both individual devices and interconnected systems.
To understand how SRAM PUF works, let’s first define what a PUF is. In the simplest terms, it is something that provides a physically defined digital fingerprint that acts as a unique identifier. Its most common application is for semiconductor devices such as microprocessors.
To read the full article, click here
Related Semiconductor IP
- Simulation VIP for AMBA CHI-C2C
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
Related Blogs
- Combining Root of Trust and PUF Technology For Robust Chip Security
- The Future of Technology: Generative AI in China
- The Future of Technology: Trends in Automotive
- Why Hardware Security Is Just as Critical as Software Security in Modern Systems
Latest Blogs
- Accelerate Automotive System Design with Cadence AI-Driven DSPs
- What Makes FPGA Architecture Ideal for Ultra-Low-Latency Systems?
- Introducing agileSecure anti-tamper security portfolio
- Same Chip, Two Destinies: How Power Profiles Improve With On-Chip Monitoring
- A Hybrid Subsystem Architecture to Elevate Edge AI