Secure Development Lifecycle for Hardware Becomes an Imperative
Given recent events, its time for chip makers to take a page from the software vendor handbook and step up their game in heading off potentially costly threats.
A Secure Development Lifecycle (SDL) for hardware with appropriate hardware security products could have prevented the recent Meltdown and Spectre vulnerabilities affecting Intel, ARM and AMD processor architectures. An SDL is the process of specifying a security threat model and then designing, developing and verifying against that threat model.
Many in the software domain are familiar with SDL, which is a process invented by Microsoft to improve the security of software. To make this process as efficient as possible, the software domain is filled with widely deployed static and dynamic analysis tools to provide automation around security review for various stages of the development lifecycle.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related Blogs
- Raspberry Pi Pico 2: Arm-based Development Board Delivers Higher, More Secure Performance for Commercial Applications
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Synopsys Joins IFS Alliance for Development of Secure Microelectronics for U.S. DoD
- Secure software development for modern vehicles
Latest Blogs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production
- From GPUs to Memory Pools: Why AI Needs Compute Express Link (CXL)
- Verification of UALink (UAL) and Ultra Ethernet (UEC) Protocols for Scalable HPC/AI Networks using Synopsys VIP
- Enhancing PCIe6.0 Performance: Flit Sequence Numbers and Selective NAK Explained
