Post-quantum Cryptography/PQC: New Algorithms for a New Era
Quantum computing is being pursued across industry, government and academia globally with tremendous energy, and powerful quantum computers will become a reality in the not-so-distant future. To ensure today’s data remains protected into the future, we need to implement now security solutions that safeguard against quantum attacks.
Why are quantum computers a security threat?
It is well known that, once sufficiently large quantum computers exist, traditional asymmetric cryptographic methods for key exchange and digital signatures will be broken. Leveraging Shor’s algorithm, they will reduce the security of discrete logarithm-based schemes like Elliptic Curve Cryptography (ECC) and factorization-based schemes like RSA (Rivest-Shamir-Adleman) so much that no reasonable key size would suffice to keep data secure. Governments, researchers, and tech leaders the world over have recognized this quantum threat and the difficulty in securing critical infrastructure against quantum computers.
What is post-quantum cryptography/PQC?
To read the full article, click here
Related Semiconductor IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
- Lossless & Lossy Frame Compression IP
Related Blogs
- Silicon-proven LVTS for 2nm: a new era of accuracy and integration in thermal monitoring
- SiFive; Empowering A New Era of Data Center Innovation
- LPDDR6: A New Standard and Memory Choice for AI Data Center Applications
- New Algorithms for Vision Require a New Processor
Latest Blogs
- MIPS P8700 RISC-V Processor for Advanced Functional Safety Systems
- Boost SoC Flexibility: 4 Design Tips for Memory Subsystems with Combo DDR3/4 Interfaces
- High Bandwidth Memory Evolution from First Generation HBM to the Latest HBM4
- Keeping Pace with CXL Specification Revisions
- Silicon-proven LVTS for 2nm: a new era of accuracy and integration in thermal monitoring