Post-quantum Cryptography/PQC: New Algorithms for a New Era
Quantum computing is being pursued across industry, government and academia globally with tremendous energy, and powerful quantum computers will become a reality in the not-so-distant future. To ensure today’s data remains protected into the future, we need to implement now security solutions that safeguard against quantum attacks.
Why are quantum computers a security threat?
It is well known that, once sufficiently large quantum computers exist, traditional asymmetric cryptographic methods for key exchange and digital signatures will be broken. Leveraging Shor’s algorithm, they will reduce the security of discrete logarithm-based schemes like Elliptic Curve Cryptography (ECC) and factorization-based schemes like RSA (Rivest-Shamir-Adleman) so much that no reasonable key size would suffice to keep data secure. Governments, researchers, and tech leaders the world over have recognized this quantum threat and the difficulty in securing critical infrastructure against quantum computers.
What is post-quantum cryptography/PQC?
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related Blogs
- Silicon-proven LVTS for 2nm: a new era of accuracy and integration in thermal monitoring
- SiFive; Empowering A New Era of Data Center Innovation
- LPDDR6: A New Standard and Memory Choice for AI Data Center Applications
- New Algorithms for Vision Require a New Processor
Latest Blogs
- Shaping the Future of Semiconductor Design Through Collaboration: Synopsys Wins Multiple TSMC OIP Partner of the Year Awards
- Pushing the Boundaries of Memory: What’s New with Weebit and AI
- Root of Trust: A Security Essential for Cyber Defense
- Evolution of AMBA AXI Protocol: An Introduction to the Issue L Update
- An Introduction to AMBA CHI Chip-to-Chip (C2C) Protocol