Novel Microprocessor-based Physical Unclonable Function Demonstrated
The Secure Embedded Systems (SES) lab in the Center for Embedded Systems for Critical Applications (CESCA) at Virginia Tech, has demonstrated a novel Physical Unclonable Function (PUF), implemented in a microprocessor. An on-chip PUF is an integrated structure that creates a chip-unique response. It can be used to uniquely distinguish one single chip among a large population of identical chips. PUFs are used for cryptographic key generation, and for authentication. Most of the existing PUF designs, however, consume a high amount of silicon resources and/or energy. This makes them less useful for embedded implementations.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related Blogs
- Secret Key Generation with Physically Unclonable Functions
- Physically Unclonable Functions as a Solid Foundation of Platform Security Architecture
- Physical IP network effects
- Will Flexible ASSPs Meet Up With Fixed Function FPGAs?
Latest Blogs
- Cadence Unveils the Industry’s First eUSB2V2 IP Solutions
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms