Novel Microprocessor-based Physical Unclonable Function Demonstrated
The Secure Embedded Systems (SES) lab in the Center for Embedded Systems for Critical Applications (CESCA) at Virginia Tech, has demonstrated a novel Physical Unclonable Function (PUF), implemented in a microprocessor. An on-chip PUF is an integrated structure that creates a chip-unique response. It can be used to uniquely distinguish one single chip among a large population of identical chips. PUFs are used for cryptographic key generation, and for authentication. Most of the existing PUF designs, however, consume a high amount of silicon resources and/or energy. This makes them less useful for embedded implementations.
To read the full article, click here
Related Semiconductor IP
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
Related Blogs
- Secret Key Generation with Physically Unclonable Functions
- Will Flexible ASSPs Meet Up With Fixed Function FPGAs?
- Using Physical USB Devices with the Xilinx Zynq-7000 Virtual Platform
- Automating Timing Closure Using Interconnect IP, Physical Information
Latest Blogs
- How Arasan’s SoundWire PHY Can Elevate Your Next Audio SoC
- Cadence Leads the Way at PCI-SIG DevCon 2025 with Groundbreaking PCIe 7.0 Demos
- Introducing the Akeana 1000 Series Processors
- How fast a GPU do you need for your user interface?
- PCIe 6.x and 112 Gbps Ethernet: Synopsys and TeraSignal Achieve Optical Interconnect Breakthroughs