Manufacturing RRAM: Challenges & Opportunities
Non-volatile resistive random access memory (RRAM), widely considered by analysts and other leading experts to be the most viable alternative to NAND, offers clear advantages in cost, manufacturability, and gains in overall system performance. There is no question that current NAND technology has hit its scaling limits at the 1Y node. While 3D-NAND is considered to be the next alternative to NAND by enabling continuous cost reduction and scaling, the technology suffers from cell performance issues and poor on/off ratios, resulting in increased system complexity.
Challenges
In order for a technology to succeed in a 3D architecture, it must deliver a significant increase in density, with a lower cost per bit compared to current Flash solutions, and it must accomplish this with a cell that performs better than existing cells. If these two requirements are not met, a 3D memory will fail to meet the capacity, density, and cost expectations of customers designing next-generation products.
To read the full article, click here
Related Semiconductor IP
- Network-on-Chip (NoC)
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- DVB-S2 Demodulator
- UCIe PHY (Die-to-Die) IP
- UCIe-S 64GT/s PHY IP
Related Blogs
- Navigating Challenges and Embracing Opportunities in 2024
- PCIe Low-Power Validation Challenges and Potential Solutions (PIPE/L1 Substates)
- Three Ethernet Design Challenges in Industrial Automation
- Some thoughts on VLSI manufacturing in India
Latest Blogs
- Enabling End-to-End EDA Flow on Arm-Based Compute for Infrastructure Flexibility
- Real PPA improvements from analog IC migration
- Design specification: The cornerstone of an ASIC collaboration
- The importance of ADCs in low-power electrocardiography ASICs
- VESA Adaptive-Sync V2 Operation in DisplayPort VIP