Manufacturing RRAM: Challenges & Opportunities
Non-volatile resistive random access memory (RRAM), widely considered by analysts and other leading experts to be the most viable alternative to NAND, offers clear advantages in cost, manufacturability, and gains in overall system performance. There is no question that current NAND technology has hit its scaling limits at the 1Y node. While 3D-NAND is considered to be the next alternative to NAND by enabling continuous cost reduction and scaling, the technology suffers from cell performance issues and poor on/off ratios, resulting in increased system complexity.
Challenges
In order for a technology to succeed in a 3D architecture, it must deliver a significant increase in density, with a lower cost per bit compared to current Flash solutions, and it must accomplish this with a cell that performs better than existing cells. If these two requirements are not met, a 3D memory will fail to meet the capacity, density, and cost expectations of customers designing next-generation products.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related Blogs
- Navigating Challenges and Embracing Opportunities in 2024
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- Some thoughts on VLSI manufacturing in India
- 450mm Semiconductor Manufacturing Debate
Latest Blogs
- The Perfect Solution for Local AI
- UA Link vs Interlaken: What you need to know about the right protocol for AI and HPC interconnect fabrics
- Analog Design and Layout Migration automation in the AI era
- UWB, Digital Keys, and the Quest for Greater Range
- Building Smarter, Faster: How Arm Compute Subsystems Accelerate the Future of Chip Design