Implementing Automotive Radar on Tensilica Processors
The big controversy about sensors in autonomous driving is whether lidar is essential. Radar has improved significantly in resolution and so I like to phrase the question as to whether radar is getting better faster than lidar is getting cheaper. Today's focus is on radar since the technology is playing an increasingly important role, driven by automotive ADAS applications. These applications require higher performance and more capabilities from the radar module to determine distance, direction, and speed of targets in a multi-target scenario.
The radar technology used is known as frequency modulated continuous wave (FMCW), typically in the 77GHz band. Instead of putting out individual radar pulses and measuring the time-of-flight for the echo to return, the radar is transmitted continuously but with frequency varying, typically in a linear sawtooth wave.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related Blogs
- Tensilica ConnX B20 for 5G, and Automotive Radar/Lidar
- Tom Quan on TSMC's Automotive Strategy
- How to Achieve High-Accuracy Keyword Spotting on Cortex-M Processors
- Delivering on the IoT Promise with Galileo Software GPS and Tensilica DSP IP
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production