Implementing Automotive Radar on Tensilica Processors
The big controversy about sensors in autonomous driving is whether lidar is essential. Radar has improved significantly in resolution and so I like to phrase the question as to whether radar is getting better faster than lidar is getting cheaper. Today's focus is on radar since the technology is playing an increasingly important role, driven by automotive ADAS applications. These applications require higher performance and more capabilities from the radar module to determine distance, direction, and speed of targets in a multi-target scenario.
The radar technology used is known as frequency modulated continuous wave (FMCW), typically in the 77GHz band. Instead of putting out individual radar pulses and measuring the time-of-flight for the echo to return, the radar is transmitted continuously but with frequency varying, typically in a linear sawtooth wave.
To read the full article, click here
Related Semiconductor IP
- Bluetooth® Low Energy 6.2 PHY IP with Channel Sounding
- General use, integer-N 4GHz Hybrid Phase Locked Loop on TSMC 28HPC
- JPEG XL Encoder
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
Related Blogs
- Tensilica ConnX B20 for 5G, and Automotive Radar/Lidar
- Tom Quan on TSMC's Automotive Strategy
- How to Achieve High-Accuracy Keyword Spotting on Cortex-M Processors
- Delivering on the IoT Promise with Galileo Software GPS and Tensilica DSP IP