How Early Power Analysis Drives Energy-Efficient RISC-V Designs
In the world of processor development, flexibility is becoming a distinct advantage. As an open-standard instruction set architecture (ISA), the fifth iteration of reduced instruction set computing (RISC-V) embodies this direction. It is rapidly changing the industry by opening new possibilities for collaboration, innovation, and design autonomy.
Currently widely applied in the context of embedded applications and microcontrollers, RISC-V is also likely to play an important role in the future of high-performance computing and data centers. Within this context, energy efficiency is a central theme. The most advanced technology has a voracious appetite for energy, and finding ways to support innovation while reducing power consumption is a priority for businesses everywhere. It’s no exaggeration to say that in today’s world, every fraction of a percent of power reduction is critical.
RISC-V designs leverage a hardware description language to describe the processor micro-architecture. This description, commonly referred to as Register Transfer level (RTL) code, underpins the development of energy-efficient RISC-V designs. Read on to learn more about how it works and how Synopsys supports the design and implementation of systems that save valuable power.
To read the full article, click here
Related Semiconductor IP
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- 32 bit RISC-V Multicore Processor with 256-bit VLEN and AMM
- All-In-One RISC-V NPU
- ISO26262 ASIL-B/D Compliant 32-bit RISC-V Core
Related Blogs
- Unlock early software development for custom RISC-V designs with faster simulation
- Dynamic Power Estimation Hits Limits of SoC Designs
- How to Verify Performance of Complex Interconnect-Based Designs?
- Adding RISC-V CPU Custom Extensions Can Boost Performance, Reduce Power, and Cut Cost in 5G, AI. AR/VR, and IoT applications
Latest Blogs
- How Arasan’s SoundWire PHY Can Elevate Your Next Audio SoC
- Cadence Leads the Way at PCI-SIG DevCon 2025 with Groundbreaking PCIe 7.0 Demos
- Introducing the Akeana 1000 Series Processors
- How fast a GPU do you need for your user interface?
- PCIe 6.x and 112 Gbps Ethernet: Synopsys and TeraSignal Achieve Optical Interconnect Breakthroughs