Dynamic Power Estimation Hits Limits of SoC Designs
The unstoppable rise in design sizes has been taxing heavily the EDA verification tools. Dynamic power estimation tools are one example.
Several incentives entice consumers to upgrade their mobile gadgets frequently. From more functionality and enhanced user experience, to a more attractive user interface to enliven usage, lighter weight, longer battery life, and the list does not stop here. All considered, it seems that long battery life tops the list, and longer battery life directly correlates to lower power consumption.
Power consumption in microelectronics has seen a constant drop since the invention of the planar integrated circuit by Noyce and Kilby five decades ago. The planar technology made it possible to scale (shrink) solid-state devices. The smaller the transistors, the more transistors in the same area, the faster they switch, the less energy they consume and the cooler the chips run (for the same number of transistors).
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- How to reduce dynamic power by 50% for a MIPS CPU
- Why Focus Solely on CPU & GPU When Reducing SoC Power?
- FPGA Prototyping of System-on-Chip (SoC) Designs
- Arm enables the lowest power IoT devices with new Ambiq Apollo4 SoC on TSMC 22nm ULP and ULL libraries
Latest Blogs
- FiRa 3.0 Use Cases: Expanding the Future of UWB Technology
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits