Dynamic Power Estimation Hits Limits of SoC Designs
The unstoppable rise in design sizes has been taxing heavily the EDA verification tools. Dynamic power estimation tools are one example.
Several incentives entice consumers to upgrade their mobile gadgets frequently. From more functionality and enhanced user experience, to a more attractive user interface to enliven usage, lighter weight, longer battery life, and the list does not stop here. All considered, it seems that long battery life tops the list, and longer battery life directly correlates to lower power consumption.
Power consumption in microelectronics has seen a constant drop since the invention of the planar integrated circuit by Noyce and Kilby five decades ago. The planar technology made it possible to scale (shrink) solid-state devices. The smaller the transistors, the more transistors in the same area, the faster they switch, the less energy they consume and the cooler the chips run (for the same number of transistors).
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related Blogs
- How to reduce dynamic power by 50% for a MIPS CPU
- Why Focus Solely on CPU & GPU When Reducing SoC Power?
- FPGA Prototyping of System-on-Chip (SoC) Designs
- Arm enables the lowest power IoT devices with new Ambiq Apollo4 SoC on TSMC 22nm ULP and ULL libraries
Latest Blogs
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security