Dynamic Power Estimation Hits Limits of SoC Designs
The unstoppable rise in design sizes has been taxing heavily the EDA verification tools. Dynamic power estimation tools are one example.
Several incentives entice consumers to upgrade their mobile gadgets frequently. From more functionality and enhanced user experience, to a more attractive user interface to enliven usage, lighter weight, longer battery life, and the list does not stop here. All considered, it seems that long battery life tops the list, and longer battery life directly correlates to lower power consumption.
Power consumption in microelectronics has seen a constant drop since the invention of the planar integrated circuit by Noyce and Kilby five decades ago. The planar technology made it possible to scale (shrink) solid-state devices. The smaller the transistors, the more transistors in the same area, the faster they switch, the less energy they consume and the cooler the chips run (for the same number of transistors).
To read the full article, click here
Related Semiconductor IP
- 50MHz to 800MHz Integer-N RC Phase-Locked Loop on SMIC 55nm LL
- Simulation VIP for AMBA CHI-C2C
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
Related Blogs
- Why Focus Solely on CPU & GPU When Reducing SoC Power?
- FPGA Prototyping of System-on-Chip (SoC) Designs
- Automatically generated analog IP: How it works in SoC designs
- How Does Short-Reach Connectivity Transcend Physical and Power Limits?
Latest Blogs
- Powering Scale Up and Scale Out with 224G SerDes for UALink and Ultra Ethernet
- Arm and Synopsys: Delivering an Integrated, Nine-Stage “Silicon-to-System” Chip Design Flow
- Accelerate Automotive System Design with Cadence AI-Driven DSPs
- What Makes FPGA Architecture Ideal for Ultra-Low-Latency Systems?
- Introducing agileSecure anti-tamper security portfolio