How CXL Is Improving Latency in High-Performance Computing
From the dawn of civilization through 2003, roughly five exabytes of data were created in total, according Eric Schmidt, past CEO of Google. By 2025, global data creation is expected to reach 180 zettabytes. This means that within the span of a single generation, we've created roughly 36,000 times the amount of data ever created—that's a lot of data! To accommodate this data explosion, the installed base of storage capacity is expected to increase at 19.2% CAGR through 2025, and the data center accelerator market is expected to grow by 25% CAGR through 2028.
It doesn't stop there.
Managing data—created, copied, stored, consumed, and otherwise proliferated from the data center to the edge—creates unique challenges for SoC designers. This includes mounting pressure to move the data through systems faster and with greater efficiency and security: Lower power. Smaller area. Lower latency. And with data confidentiality and integrity. It's essential for the interconnects in multi-die systems to have low latency along with enough flexibility to manage a variety of bandwidths and throughput. Complying with the right industry standards can help ensure design success.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
- Multi-core capable 64-bit RISC-V CPU with vector extensions
Related Blogs
- How the CXL Standard Improves Latency in High-Performance Computing
- How Arm is making it easier to build platforms that support Confidential Computing
- Utilizing CXL 2.0 IP in the Defense Sector: A Revolution in Secure Computing
- What Is Viral in CXL 3.0?
Latest Blogs
- From guesswork to guidance: Mastering processor co-design with Codasip Exploration Framework
- Enabling AI Innovation at The Far Edge
- Unleashing Leading On-Device AI Performance and Efficiency with New Arm C1 CPU Cluster
- The Perfect Solution for Local AI
- UA Link vs Interlaken: What you need to know about the right protocol for AI and HPC interconnect fabrics