Focus on Memory at AI Hardware Summit
Last week, I had the pleasure of hosting a panel at the AI Hardware & Edge AI Summit on the topic of “Memory Challenges for Next-Generation AI/ML Computing.” I was joined by David Kanter of MLCommons, Brett Dodds of Microsoft, and Nuwan Jayasena of AMD, three accomplished experts that brought differing views on the importance of memory for AI/ML. Our discussion focused on some of the challenges and opportunities for DRAMs and memory systems. As the performance requirements for AI/ML continue growing rapidly, the importance of memory continues to grow as well.
In fact, we’re seeing demands for “all of the above” when it comes to memory for AI, specifically:
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related Blogs
- A Focus on Mission-Critical Defense Solutions at GOMACTech
- High Bandwidth Memory (HBM) at the AI Crossroads: Customization or Standardization?
- Apple iPhone 6S: LPDDR4 arrives at Apple
- And Then There Were Three: GLOBALFOUNDRIES Drops 7nm to Focus on Other Geometries
Latest Blogs
- Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
- The Role of GPU in AI: Tech Impact & Imagination Technologies
- Time-of-Flight Decoding with Tensilica Vision DSPs - AI's Role in ToF Decoding
- Synopsys Expands Collaboration with Arm to Accelerate the Automotive Industry’s Transformation to Software-Defined Vehicles
- Deep Robotics and Arm Power the Future of Autonomous Mobility