Effectively hiding sensitive data with RISC-V Zk and custom instructions
Cryptographic hash functions play a critical role in computer security providing a one-way transformation of sensitive data. Many information-security applications benefit from using hash functions, specifically digital signatures, message authentication codes, and other forms of authentication. The calculation of hash functions such as SHA512, SHA256, MD5 etc is a potential playground for Custom Compute. This is where the ISA flexibility enabled by RISC-V and empowered by the Zk extension, as well as the ability to merge inherently sequential bit manipulations in custom instructions help to improve the performance.
SHA512 hash function
SHA512 belongs to the ‘SHA-2’ family designed by the United States National Security Agency. Their compliance to FIPS standards have been validated through the CMVP program, jointly run by the National Institute of Standards and Technology and the Communications Security Establishment.
To read the full article, click here
Related Semiconductor IP
- MIPI I3C Master RISC-V based subsystem
- ISO26262 ASIL-B/D Compliant 32-bit RISC-V Core
- RISC-V CPU IP
- RISC-V Vector Extension
- RISC-V Real-time Processor
Related Blogs
- Custom Compute for Edge AI: Accelerating innovation with Lund University and Codasip University Program
- Scaling Out Deep Learning (DL) Inference and Training: Addressing Bottlenecks with Storage, Networking with RISC-V CPUs
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- Semidynamics: A Single-Software-Stack, Configurable and Customizable RISC-V Solution
Latest Blogs
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security
- Ceva-XC21 and Ceva-XC23 DSPs: Advancing Wireless and Edge AI Processing
- Cadence Silicon Success of UCIe IP on Samsung Foundry’s 5nm Automotive Process
- Empowering your Embedded AI with 22FDX+