Effectively hiding sensitive data with RISC-V Zk and custom instructions
Cryptographic hash functions play a critical role in computer security providing a one-way transformation of sensitive data. Many information-security applications benefit from using hash functions, specifically digital signatures, message authentication codes, and other forms of authentication. The calculation of hash functions such as SHA512, SHA256, MD5 etc is a potential playground for Custom Compute. This is where the ISA flexibility enabled by RISC-V and empowered by the Zk extension, as well as the ability to merge inherently sequential bit manipulations in custom instructions help to improve the performance.
SHA512 hash function
SHA512 belongs to the ‘SHA-2’ family designed by the United States National Security Agency. Their compliance to FIPS standards have been validated through the CMVP program, jointly run by the National Institute of Standards and Technology and the Communications Security Establishment.
To read the full article, click here
Related Semiconductor IP
- All-In-One RISC-V NPU
- ISO26262 ASIL-B/D Compliant 32-bit RISC-V Core
- RISC-V CPU IP
- Data Movement Engine - Best in class multi-core high-performance AI-enabled RISC-V Automotive CPU for ADAS, AVs and SDVs
- Low Power RISCV CPU IP
Related Blogs
- Custom Compute for Edge AI: Accelerating innovation with Lund University and Codasip University Program
- Scaling Out Deep Learning (DL) Inference and Training: Addressing Bottlenecks with Storage, Networking with RISC-V CPUs
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- Unlock early software development for custom RISC-V designs with faster simulation
Latest Blogs
- Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
- The Role of GPU in AI: Tech Impact & Imagination Technologies
- Time-of-Flight Decoding with Tensilica Vision DSPs - AI's Role in ToF Decoding
- Synopsys Expands Collaboration with Arm to Accelerate the Automotive Industry’s Transformation to Software-Defined Vehicles
- Deep Robotics and Arm Power the Future of Autonomous Mobility